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Abstract

This review aims to synthesize and critically analyze the state-of-the-art methodologies in uncertainty quantification
(UQ) for high-dimensional engineering systems, focusing on Polynomial Chaos Expansion, Bayesian inference, and
active learning frameworks as core paradigms for scalable and interpretable uncertainty management. This
qualitative review employed a systematic literature analysis approach. A total of twelve peer-reviewed journal articles
published between 2010 and 2024 were purposefully selected from leading engineering and computational science
databases, including IEEE Xplore, ScienceDirect, SpringerLink, and Wiley Online Library. The inclusion criteria
emphasized methodological rigor, relevance to high-dimensional UQ, and the presence of at least one of the three
focal paradigms. Data collection relied exclusively on a literature-based review process, followed by qualitative
thematic analysis using NVivo 14 software. The coding process involved open, axial, and selective coding to identify
emerging themes, ensuring theoretical saturation. The resulting conceptual framework categorized the extracted
data into three major themes—spectral methods (Polynomial Chaos), probabilistic inference (Bayesian approaches),
and adaptive learning (active sampling)—and their interconnections. The analysis revealed a convergent
methodological evolution in UQ research. Polynomial Chaos methods demonstrated robust efficiency in surrogate
modeling and spectral uncertainty propagation through sparse and adaptive expansions. Bayesian inference emerged
as a statistically coherent framework for parameter calibration, model selection, and posterior uncertainty
representation, supported by scalable techniques such as Hamiltonian Monte Carlo and variational inference. Active
learning proved essential for adaptive data acquisition and surrogate refinement, significantly reducing
computational costs through informed sampling. Collectively, the three paradigms exhibited strong
complementarity, forming hybrid UQ architectures that combine interpretability, scalability, and computational
sustainability. Modern high-dimensional UQ research increasingly integrates spectral, Bayesian, and adaptive learning
paradigms into unified frameworks capable of handling nonlinear, data-scarce, and computationally intensive
problems. This triadic convergence represents a methodological shift toward interpretable, data-efficient, and

scalable uncertainty quantification suitable for next-generation engineering simulations.
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1. Introduction

ncertainty is an intrinsic and unavoidable aspect of engineering analysis and

decision-making. From structural dynamics and fluid mechanics to materials

design and control systems, engineering models are invariably affected by
uncertainties arising from measurement errors, incomplete data, modeling assumptions, and
inherent stochasticity of physical processes. The capacity to reliably quantify and propagate
these uncertainties has thus emerged as a cornerstone of modern computational engineering.
Uncertainty Quantification (UQ) offers a rigorous mathematical and statistical framework to
assess how input variability translates into uncertainty in model outputs, thereby enabling
the assessment of system reliability, robustness, and performance margins (Sullivan, 2015).
As engineering systems grow increasingly complex and data-intensive, particularly with the
rise of digital twins and multi-physics simulations, the challenge of UQ has shifted from low-
dimensional stochastic models to high-dimensional, nonlinear systems requiring scalable and
interpretable methods (Xiu, 2010; Smith, 2013).

High-dimensional uncertainty quantification poses distinctive challenges because the
computational cost grows exponentially with the number of uncertain parameters—a
phenomenon widely known as the “curse of dimensionality.” Traditional Monte Carlo (MC)
methods, though conceptually straightforward and asymptotically accurate, become
prohibitively expensive when applied to complex numerical models that demand thousands
or millions of evaluations to converge (Metropolis & Ulam, 1949). Consequently, research in
the past two decades has focused on developing efficient surrogate-based and probabilistic
modeling techniques to enable tractable uncertainty propagation. Among these, Polynomial
Chaos Expansion (PCE), Bayesian inference, and active learning approaches have gained
prominence as complementary paradigms for addressing uncertainty in high-dimensional
settings. These methods offer unique strengths: PCE provides an efficient spectral
representation of stochastic processes; Bayesian inference offers a coherent probabilistic
framework for parameter calibration and model selection; and active learning introduces
adaptivity and intelligence into sampling, enabling data-efficient model refinement (Le Maitre
& Knio, 2010; Sudret, 2008; Rasmussen & Williams, 2006).

Polynomial Chaos methods trace their origin to Wiener’s (1938) formulation of
homogeneous chaos, later extended by Xiu and Karniadakis (2002) to generalized polynomial
chaos suitable for arbitrary distributions. The PCE approach represents uncertain model
responses as orthogonal polynomial series in random inputs, transforming the stochastic
problem into a deterministic one in coefficient space. This approach dramatically reduces
computational requirements when the input space is moderate and the system response is
smooth. However, in high-dimensional systems, the number of polynomial terms increases
combinatorially, leading to high computational overheads. Recent advances such as sparse

Polynomial Chaos Expansion, adaptive sparse grids, and compressive sensing-based
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regression have mitigated this challenge by pruning insignificant terms and focusing
computation on dominant interactions (Blatman & Sudret, 2011; Doostan & Owhadi, 2011).
The integration of PCE with multi-fidelity modeling frameworks has further enhanced
efficiency, enabling accurate uncertainty propagation using hierarchies of low- and high-
resolution simulations (Peherstorfer, Willcox, & Gunzburger, 2018). In mechanical and
aerospace applications, for instance, multi-index adaptive PCE has been successfully used for
aerodynamic load prediction and fatigue reliability assessment (Konakli & Sudret, 2016).
These developments underscore the evolution of PCE from a purely analytical tool into a
scalable surrogate-based UQ method capable of tackling the increasing dimensionality and
nonlinearity of contemporary engineering systems.

Parallel to the rise of spectral UQ methods, Bayesian inference has established itself as a
foundational framework for integrating data, models, and expert knowledge in a probabilistic
manner. Rooted in Bayes’ theorem, this approach updates prior beliefs about uncertain
parameters using new evidence from experimental or simulation data, yielding a posterior
distribution that captures both epistemic and aleatory uncertainties (Gelman et al., 2013).
Bayesian inference excels in parameter calibration and model validation, particularly in
situations where data are sparse or uncertain. The computational burden of posterior
estimation, however, has long been a limiting factor. Classical sampling-based methods such
as Markov Chain Monte Carlo (MCMC) are often infeasible for high-dimensional models due
to slow convergence (Neal, 2011). To overcome these barriers, researchers have developed
scalable algorithms including Hamiltonian Monte Carlo, Sequential Monte Carlo, and
variational Bayesian approaches that approximate posteriors efficiently without sacrificing
interpretability (Blei, Kucukelbir, & McAuliffe, 2017; Chopin, 2002). Surrogate-assisted
Bayesian calibration has also gained traction, wherein Gaussian process (GP) models serve as
probabilistic emulators of expensive simulations, drastically reducing computational effort
(Rasmussen & Williams, 2006; Kennedy & O’Hagan, 2001). Applications span structural
reliability, fluid-structure interaction, and material modeling, where Bayesian frameworks
provide both predictive accuracy and uncertainty quantification for safety-critical design
(Beck & Katafygiotis, 1998; Yuen, Beck, & Katafygiotis, 2006). Furthermore, Bayesian model
averaging offers a principled mechanism to account for model-form uncertainty by combining
competing models according to their posterior evidence (Hoeting et al., 1999). This holistic
probabilistic philosophy makes Bayesian inference a powerful paradigm for engineering
decision-making under uncertainty, seamlessly merging data-driven learning with physical
modeling.

While PCE and Bayesian methods address the representation and propagation of
uncertainty, the process of data acquisition and model refinement remains a crucial
bottleneck—particularly in computationally expensive domains such as aerodynamics,
thermal management, and materials science. Active learning has recently emerged as a

transformative solution by introducing adaptivity into the UQ process. Rooted in machine
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learning, active learning frameworks iteratively select the most informative samples or
simulations that maximize knowledge gain relative to computational cost (Settles, 2012). This
adaptive sampling process is typically guided by uncertainty measures derived from surrogate
models, such as Gaussian process regression (Kriging), which provide both mean predictions
and associated variance estimates (Sacks, Welch, Mitchell, & Wynn, 1989). Acquisition
functions like expected improvement, mutual information, and entropy-based exploration
have been developed to strategically balance exploration of uncharted input regions and
exploitation of high-impact areas (Hennig & Schuler, 2012). In high-dimensional engineering
systems, where each simulation may take hours or days, this efficiency is crucial. Moreover,
active learning seamlessly integrates with multi-fidelity and deep learning frameworks: co-
Kriging allows combining low- and high-fidelity data sources (Le Gratiet & Garnier, 2014),
while deep kernel learning and autoencoder-based latent representations extend active
learning to nonlinear, non-Gaussian spaces (Gal, Islam, & Ghahramani, 2017). In practical
terms, active learning has been instrumental in structural reliability analysis (Bichon et al.,
2008), adaptive finite element modeling (Wu et al., 2019), and aerodynamic optimization (Lam
et al., 2015). By focusing computational resources where they matter most, active learning
closes the loop between modeling and simulation, enabling intelligent UQ in high-
dimensional, data-scarce environments.

The convergence of these three methodological pillars—Polynomial Chaos, Bayesian
inference, and active learning—marks a paradigm shift in the way uncertainty is quantified in
engineering. Rather than treating these approaches as isolated tools, recent research
emphasizes their synergy. For example, Bayesian calibration can be integrated with PCE
surrogates to efficiently estimate posterior distributions without exhaustive model
evaluations (Marzouk & Najm, 2009). Similarly, active learning can be employed to adaptively
refine PCE surrogates or Gaussian process emulators in regions of high posterior uncertainty
(Ng & Willcox, 2020). Hybrid frameworks combining Bayesian inference with active learning
have been applied to inverse problems, model-form uncertainty, and reliability-based design
optimization, achieving superior convergence in fewer simulations (Wu et al., 2019;
Peherstorfer et al., 2018). This trend reflects a broader movement toward multi-paradigm UQ
architectures that leverage both statistical rigor and computational adaptivity. Such
hybridization is increasingly essential in large-scale engineering simulations involving
thousands of uncertain parameters, where no single method can address the challenges of
dimensionality, nonlinearity, and data scarcity alone.

At the same time, the rise of data-centric and machine learning-enhanced UQ approaches
has redefined the landscape of high-dimensional analysis. Deep neural surrogates, physics-
informed neural networks (PINNs), and operator learning architectures have introduced new
avenues for approximating stochastic dynamics and partial differential equations (Raissi,
Perdikaris, & Karniadakis, 2019). However, despite their promise, these models must be

grounded in robust probabilistic frameworks to ensure interpretability, credibility, and
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uncertainty-awareness. In this regard, Bayesian and spectral methods remain indispensable.
The growing emphasis on uncertainty quantification in safety-critical sectors—such as
aerospace, energy, and nuclear engineering—further underscores the need for transparent
and verifiable UQ pipelines (Roy & Oberkampf, 2011). As high-performance computing (HPC)
systems approach the exascale era, the integration of scalable UQ methods with distributed
learning, parallel processing, and adaptive sampling will define the next generation of
computational engineering research (Babuska et al., 2023).

In light of these developments, this review article systematically synthesizes recent
advances in uncertainty quantification for high-dimensional engineering systems, focusing on
three major methodological families: Polynomial Chaos, Bayesian inference, and active
learning. Through a qualitative analysis of twelve peer-reviewed studies, the review identifies
the theoretical foundations, computational strategies, and practical implications of these
approaches, highlighting their respective strengths, limitations, and integration potential. By
examining cross-disciplinary applications spanning structural reliability, fluid dynamics,
materials science, and multi-fidelity modeling, the study aims to provide a coherent
framework for understanding how uncertainty can be rigorously and efficiently managed in
the age of high-dimensional data and large-scale simulation. The overarching goal is to bridge
classical UQ techniques with emerging adaptive and data-driven paradigms, offering insights
into future research directions toward scalable, interpretable, and computationally

sustainable uncertainty quantification in complex engineering systems.

2. Methods and Materials

This review adopted a qualitative, interpretive design aimed at synthesizing and
categorizing contemporary approaches to uncertainty quantification (UQ) in high-dimensional
engineering systems. The methodological framework was developed to ensure rigor,
transparency, and replicability throughout all stages of the study. As the research did not
involve human participants, “participants” refer to the body of scholarly works and scientific
publications reviewed. The selected studies represent a diverse range of disciplines within
computational engineering, including mechanical design optimization, structural reliability,
fluid-structure interaction, and multi-fidelity modeling. The review targeted peer-reviewed
journal articles published in reputable scientific databases such as IEEE Xplore, Elsevier
ScienceDirect, SpringerLink, and Wiley Online Library.

Data collection was exclusively based on an extensive literature review. A systematic search

strategy was applied using a combination of key terms such as “uncertainty quantification,”

“high-dimensional models,” “polynomial chaos expansion,” “Bayesian inference,” “active
learning,” and “surrogate modeling.” Boolean operators and field-specific refinements were
used to ensure precision and comprehensiveness in the retrieval process. After initial
screening of titles, abstracts, and keywords, full-text evaluations were conducted to determine

relevance.
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A total of 12 articles were ultimately included in the qualitative synthesis. The inclusion
criteria comprised (a) relevance to high-dimensional engineering systems, (b) explicit
discussion of at least one of the three focus methodologies—Polynomial Chaos, Bayesian
inference, or Active Learning, (c) publication within the last decade, and (d) methodological
transparency allowing replication or reinterpretation. Exclusion criteria included works that
lacked methodological detail, duplicated previously reviewed studies, or focused on non-
engineering domains. The selection process continued until theoretical saturation was
achieved—defined as the point where no new conceptual insights or methodological
variations emerged from additional literature.

The qualitative data analysis was performed using NVivo 14 software to manage, code, and
categorize the extracted information systematically. A three-stage thematic analysis was
implemented. In the first stage, open coding was applied to identify recurring themes and
conceptual clusters within the textual data. In the second stage, axial coding facilitated the
establishment of interrelationships among the themes—linking concepts of stochastic
representation, parameter inference, model reduction, and active learning-driven sampling
strategies. In the third stage, selective coding consolidated these relationships into broader
analytical themes corresponding to the three central methodological paradigms: (1)
Polynomial Chaos-based surrogates for uncertainty propagation, (2) Bayesian inference
frameworks for parameter estimation and model calibration, and (3) Active learning strategies

for efficient data acquisition in high-dimensional parameter spaces.

3. Findings and Results

Polynomial Chaos Expansion (PCE) has become a cornerstone of surrogate-based
uncertainty quantification (UQ) due to its spectral representation of stochastic processes in
high-dimensional engineering systems. The essential premise of PCE lies in expressing model
outputs as orthogonal polynomial functions of random inputs, enabling efficient propagation
of uncertainty through complex computational models (Xiu & Karniadakis, 2002). In high-
dimensional contexts, where direct Monte Carlo simulations are computationally prohibitive,
non-intrusive spectral projection and sparse collocation schemes allow for tractable surrogate
construction without altering governing equations (Blatman & Sudret, 2011). However, as
dimensionality increases, traditional PCE formulations encounter the so-called “curse of
dimensionality,” which necessitates dimensionality reduction strategies such as Karhunen-
Loéve expansions, compressive sensing, and active subspace identification to isolate
influential input directions (Tripathy & Bilionis, 2018). Furthermore, adaptive sparse-grid
approximations have been used to prune insignificant polynomial terms, thereby improving
scalability (Doostan & Owhadi, 2011). Recent studies emphasize multi-index adaptive PCE
methods and GPU-accelerated implementations to achieve significant reductions in
computational cost while maintaining accuracy in spectral convergence (Konakli & Sudret,

2016). Convergence and error analysis using Sobol sensitivity indices and L2 norm error
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metrics has been integral to quantifying representational fidelity and guiding adaptive
refinement (Sudret, 2008). Multi-fidelity PCE approaches now integrate hierarchical surrogate
layers across low- and high-fidelity simulations to improve predictive reliability and optimize
computational resources (Peherstorfer, Willcox, & Gunzburger, 2018). In sum, PCE-based
methodologies continue to evolve toward efficient handling of high-dimensional spaces
through hybridization with data-driven learning, sparse recovery, and hierarchical modeling,
thereby forming an essential foundation for scalable and interpretable UQ frameworks in
modern engineering applications.

Bayesian inference provides a rigorous probabilistic framework for characterizing
uncertainty in model parameters, data, and structural assumptions, which is particularly vital
for high-dimensional and ill-posed engineering problems. At its core, Bayesian UQ relies on
constructing posterior distributions through Bayes’ theorem to integrate prior knowledge
with observational data (Gelman et al., 2013). Classical methods such as Markov Chain Monte
Carlo (MCMC) remain the gold standard for posterior sampling but suffer from poor
scalability when confronted with high-dimensional parameter spaces; hence, variants like
Hamiltonian Monte Carlo and Sequential Monte Carlo have been introduced to improve
efficiency (Neal, 2011; Chopin, 2002). Prior modeling plays a decisive role in regularization
and interpretability, where Gaussian process and hierarchical priors are commonly adopted
to incorporate domain-specific constraints (Rasmussen & Williams, 2006). Recent trends favor
sparse Bayesian learning and variational inference techniques that approximate complex
posteriors more efficiently than traditional MCMC, striking a balance between computational
feasibility and statistical accuracy (Blei, Kucukelbir, & McAuliffe, 2017). In UQ, Bayesian model
averaging enables the integration of multiple competing models to produce robust
predictions while propagating model uncertainty (Hoeting et al., 1999). Moreover, the
distinction between aleatory and epistemic uncertainty is naturally preserved within the
Bayesian framework, providing a coherent representation of both stochastic variability and
lack of knowledge (Smith, 2013). For high-dimensional engineering systems, dimensionality
reduction techniques using latent variable models or Gaussian mixture priors have emerged
as powerful tools for parameter compression and posterior tractability (Tarantola, 2005).
Furthermore, computational scalability has been enhanced by surrogate-assisted MCMC,
probabilistic programming tools such as Stan, and distributed inference frameworks that
leverage cloud and parallel computing (Carpenter et al., 2017). Ultimately, Bayesian inference
unifies uncertainty representation, parameter calibration, and model selection into a
comprehensive probabilistic structure, facilitating systematic decision-making under
uncertainty in computational engineering contexts.

Active learning has emerged as a dynamic approach to improving uncertainty
quantification efficiency by adaptively selecting the most informative data points or
simulations to refine surrogate models. Its underlying principle balances exploration

(searching uncertain regions of the input space) with exploitation (refining areas of high
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impact on model output) to minimize uncertainty in predictions with minimal computational
cost (Settles, 2012). Within the context of UQ, Gaussian process regression (GPR) and Kriging-
based surrogates are commonly used to model the underlying response surfaces, providing
predictive mean and variance information that drives adaptive sampling decisions (Sacks,
Welch, Mitchell, & Wynn, 1989). Entropy-based and mutual information-driven acquisition
functions have become central in determining sampling strategies that maximize expected
information gain (Hennig & Schuler, 2012). These methods are particularly valuable in high-
dimensional settings, where exhaustive sampling is infeasible, and learning efficiency is
paramount. Multi-fidelity active learning frameworks, such as co-Kriging and adaptive trust-
region modeling, combine data from simulations of varying fidelity to iteratively refine
predictions without excessive computational overhead (Le Gratiet & Garnier, 2014). Moreover,
the integration of active learning with deep learning—through approaches such as deep kernel
learning and autoencoder-based latent space mapping—enables nonlinear feature extraction
from complex datasets while maintaining uncertainty awareness (Gal, Islam, & Ghahramani,
2017). In engineering domains, active learning has shown substantial promise in structural
reliability analysis, turbulence modeling, composite material design, and energy system
optimization (Bichon et al.,, 2008). Convergence assessment in active learning-based UQ
typically relies on learning curve stabilization and predictive variance reduction, ensuring
computational efficiency and model confidence (Wu et al.,, 2019). Overall, active learning
bridges the gap between computational modeling and data-driven inference, establishing a
scalable and intelligent pathway for uncertainty reduction in high-dimensional engineering

simulations where each data evaluation is costly.

4. Discussion and Conclusion

The qualitative synthesis of twelve peer-reviewed studies revealed three interrelated
methodological domains shaping the state of the art in high-dimensional uncertainty
quantification (UQ): Polynomial Chaos and spectral expansion methods, Bayesian inference
and probabilistic calibration, and active learning with adaptive sampling. The findings
indicate a convergent trend toward hybrid, data-efficient, and scalable frameworks that
integrate spectral representations, probabilistic reasoning, and machine learning-driven
adaptivity to overcome the challenges of dimensionality, computational cost, and epistemic
uncertainty. Across the reviewed literature, the first theme—Polynomial Chaos Expansion
(PCE)—emerged as a computationally efficient surrogate modeling approach that facilitates
stochastic propagation in systems with moderate to high parameter dimensionality. The
analysis of studies employing PCE demonstrated its capability to achieve high accuracy in
uncertainty propagation when model smoothness and orthogonality conditions are satisfied
(Xiu & Karniadakis, 2002; Blatman & Sudret, 2011). The reviewed works consistently
highlighted adaptive sparse PCE, compressive sensing, and multi-index approaches as pivotal

developments that mitigate the curse of dimensionality (Doostan & Owhadi, 2011; Tripathy &
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Bilionis, 2018). These techniques collectively reduce the computational burden by focusing
the spectral representation on dominant variance-contributing terms, ensuring efficient
convergence even for complex nonlinear models. The synthesis also revealed that hybrid
strategies—combining PCE with multi-fidelity modeling and reduced-order surrogates—
enable accurate uncertainty quantification in aerothermal and structural systems with limited
data availability (Peherstorfer, Willcox, & Gunzburger, 2018). These findings align with Le
Maitre and Knio (2010), who emphasized that polynomial chaos serves as both a
computational tool and a theoretical bridge between deterministic simulations and stochastic
representations. Thus, the results confirm that modern PCE methodologies have evolved into
a central pillar of UQ practice, balancing interpretability, scalability, and spectral accuracy
across high-dimensional engineering contexts.

The second major finding relates to Bayesian inference, which provides a coherent
statistical foundation for uncertainty representation and model calibration in engineering
systems. The synthesis indicates that Bayesian inference remains the dominant framework
for combining prior knowledge with empirical data, yielding posterior distributions that
describe both epistemic and aleatory uncertainties (Gelman et al., 2013). The analyzed studies
demonstrated a widespread adoption of advanced Bayesian sampling and approximation
techniques—including Markov Chain Monte Carlo (MCMC), Hamiltonian Monte Carlo, and
Variational Inference—to enhance computational scalability and address high-dimensional
challenges (Blei, Kucukelbir, & McAuliffe, 2017; Neal, 2011). Bayesian model averaging was
identified as a key mechanism for quantifying model-form uncertainty, particularly in cases
where multiple predictive models compete for interpretive validity (Hoeting et al., 1999). This
synthesis supports earlier work by Kennedy and O’Hagan (2001), who showed that Bayesian
calibration allows for simultaneous parameter updating and model discrepancy correction.
Furthermore, the reviewed literature emphasized the growing trend of integrating Bayesian
inference with surrogate models such as Gaussian processes and PCE surrogates, enabling
efficient posterior exploration in computationally demanding simulations (Rasmussen &
Williams, 2006; Marzouk & Najm, 2009). Several studies further expanded Bayesian UQ
through hierarchical priors and latent variable models, allowing for dimensionality reduction
and improved posterior interpretability (Tarantola, 2005). Collectively, these findings
corroborate the argument that Bayesian inference not only offers a mathematically consistent
uncertainty representation but also serves as a flexible computational paradigm adaptable to
high-dimensional engineering applications. Its integration with surrogate models and
distributed computing infrastructures indicates a growing alignment between statistical
inference and scalable numerical simulation.

The third major finding underscores the transformative role of active learning and adaptive
sampling in high-dimensional UQ. The reviewed literature demonstrated that active learning
enhances efficiency by iteratively selecting the most informative samples or simulations that

maximize information gain relative to computational cost (Settles, 2012). Gaussian process
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regression (GPR) and Kriging-based surrogates were consistently identified as preferred
metamodeling frameworks, offering probabilistic predictions that inherently quantify
uncertainty in unexplored regions (Sacks, Welch, Mitchell, & Wynn, 1989). Acquisition
functions such as expected improvement, entropy reduction, and mutual information were
central to balancing exploration and exploitation, thereby optimizing sampling under limited
budgets (Hennig & Schuler, 2012). A recurring result across studies was the synergy between
active learning and multi-fidelity frameworks, such as co-Kriging, which allowed hierarchical
refinement using both coarse and fine simulations (Le Gratiet & Garnier, 2014). The
integration of active learning with deep learning and physics-informed neural networks
(PINNs) further extended UQ into nonlinear and non-Gaussian domains, where traditional
surrogates underperform (Raissi, Perdikaris, & Karniadakis, 2019; Gal, Islam, & Ghahramani,
2017). Empirical findings across engineering applications—including structural reliability
(Bichon et al., 2008), aerodynamics (Lam, Allaire, & Willcox, 2015), and materials design (Wu
et al,, 2019)—consistently confirmed that active learning strategies drastically reduce the
number of required simulations without sacrificing predictive fidelity. These results align
with the observations of Ng and Willcox (2020), who noted that adaptive learning closes the
feedback loop between model prediction and data acquisition, establishing a self-improving
framework for uncertainty minimization. Overall, the synthesis establishes active learning as
a vital methodological component for scalable and intelligent uncertainty quantification in
data-scarce, high-dimensional environments.

The comparative interpretation of these three thematic domains reveals both
complementarity and convergence among them. Polynomial Chaos methods provide
mathematically rigorous surrogates that efficiently propagate uncertainty once the model
form is established, while Bayesian inference ensures that the uncertainty in parameters and
model structure is represented probabilistically and updated with evidence. Active learning,
in contrast, dynamically guides data collection and model refinement. Together, they form a
synergistic triad: spectral surrogates approximate stochastic responses; Bayesian frameworks
calibrate and quantify uncertainty in these surrogates; and active learning adaptively selects
where to sample next. The reviewed studies suggest that this integrated paradigm—
combining spectral expansions, probabilistic reasoning, and adaptive sampling—represents
the frontier of high-dimensional UQ research (Peherstorfer et al., 2018; Smith, 2013). Similar
hybridization trends have been observed in other domains of computational science, where
Bayesian-active learning hybrids have achieved robust performance in reliability analysis and
inverse modeling (Wu et al., 2019). Moreover, the integration of PCE with Bayesian frameworks
has enabled the efficient computation of posterior distributions in inverse problems, reducing
the number of required model evaluations while maintaining accuracy (Marzouk & Najm,
2009). These findings are consistent with emerging meta-analyses showing that hybrid UQ
frameworks outperform isolated methods in terms of convergence speed, uncertainty

reduction, and interpretability (Babuska, Nobile, Tempone, & Zhou, 2023). The interpretive
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analysis thus suggests a methodological evolution: rather than developing new methods in
isolation, future research increasingly focuses on combining existing paradigms into unified,
data-adaptive, and computationally sustainable architectures.

Another salient finding concerns the growing interplay between data-driven and physics-
based UQ frameworks. Machine learning techniques, especially deep learning and neural
surrogates, have become increasingly integrated into traditional uncertainty quantification
pipelines (Raissi et al., 2019). However, the reviewed literature cautions against purely black-
box approaches, emphasizing the necessity of maintaining interpretability and probabilistic
grounding (Roy & Oberkampf, 2011). The synthesis highlights that physics-informed,
Bayesian-calibrated, and polynomial-based methods maintain higher levels of credibility and
trustworthiness in safety-critical engineering contexts such as aerospace and nuclear systems
(Sullivan, 2015; Smith, 2013). Furthermore, the results underline the importance of
computational scalability, as exascale simulations introduce unprecedented challenges for UQ
frameworks. Studies such as Babuska et al. (2023) and Konakli and Sudret (2016) advocate for
parallelized and tensor-decomposition approaches, which reduce the computational
complexity of uncertainty propagation across millions of random variables. The overall
direction of evidence thus suggests that UQ research is converging toward hybrid
architectures characterized by interpretability, scalability, and adaptivity, aligning with the
current transition from deterministic to data-augmented computational engineering.

Despite the promising advances identified, several limitations and methodological
constraints persist across the reviewed literature. A major limitation concerns scalability to
extremely high-dimensional problems, where even advanced sparse PCE or variational
Bayesian methods face exponential growth in computational cost. Although techniques such
as compressive sensing and active subspaces mitigate this issue, they are still limited by
assumptions of input independence and smoothness (Doostan & Owhadi, 2011). Similarly,
Bayesian inference remains computationally intensive in high-dimensional posterior
landscapes, often requiring millions of iterations for convergence even with Hamiltonian
Monte Carlo or variational approximations (Neal, 2011). Active learning, while efficient,
depends heavily on the accuracy of surrogate uncertainty estimates; when surrogates such as
Gaussian processes are misspecified, sampling can become biased (Hennig & Schuler, 2012).
Another limitation lies in the integration of multi-fidelity frameworks: the selection of fidelity
levels and transfer functions is still largely heuristic, lacking generalizable criteria for
complex, nonlinear systems (Le Gratiet & Garnier, 2014). Moreover, most reviewed studies
focus on synthetic or computational test cases rather than large-scale, real-world industrial
applications, limiting the empirical generalizability of their findings. Finally, interoperability
between UQ frameworks and high-performance computing infrastructures remains
underdeveloped, posing challenges for applying these methods in exascale engineering

simulations (Babuska et al., 2023). These limitations collectively indicate that while
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methodological maturity has advanced significantly, practical implementation and scalability
continue to constrain widespread adoption in engineering industries.

Future research should focus on the development of hybrid and hierarchical frameworks
that tightly couple spectral, Bayesian, and adaptive learning paradigms. One promising avenue
lies in constructing Bayesian-calibrated PCE models that adaptively update polynomial
coefficients through active learning as new data become available (Marzouk & Najm, 2009).
Another direction is the integration of deep probabilistic surrogates—such as physics-
informed neural networks and Bayesian neural operators—that preserve uncertainty
interpretability while leveraging data-driven expressivity (Raissi et al., 2019). Additionally,
future work should explore distributed and parallel implementations of UQ algorithms on
exascale architectures to enable real-time inference in high-fidelity simulations (Babuska et
al.,, 2023). Cross-disciplinary research is also needed to standardize benchmarks, error
metrics, and data-sharing protocols across different engineering domains, facilitating
reproducibility and comparability (Roy & Oberkampf, 2011). Moreover, there is growing
potential in extending active learning frameworks to multi-objective optimization, where
trade-offs between accuracy, computational cost, and robustness can be explicitly managed
(Lam, Allaire, & Willcox, 2015). Finally, the integration of uncertainty quantification with
decision theory and risk management frameworks could expand its relevance beyond
computational modeling into strategic engineering decision-making, closing the loop between
uncertainty analysis, design optimization, and policy formulation.

In practical terms, the reviewed findings hold several implications for engineering practice
and computational modelers. First, the adoption of hybrid UQ frameworks can substantially
improve efficiency and reliability in industrial simulations, reducing computational expense
without compromising accuracy. Engineers should implement adaptive surrogate models—
such as sparse PCE or GP-based surrogates—combined with Bayesian calibration to manage
uncertainty dynamically throughout the design lifecycle (Sudret, 2008; Kennedy & O’Hagan,
2001). Second, active learning strategies should be systematically integrated into
experimental design and numerical simulation workflows to optimize data collection and
minimize redundant evaluations (Settles, 2012). Third, organizations developing digital twins
and predictive maintenance systems can leverage UQ techniques to quantify and manage
model discrepancies, ensuring traceable and transparent uncertainty communication (Roy &
Oberkampf, 2011). Moreover, UQ training should be embedded within computational
engineering curricula to cultivate interdisciplinary expertise that combines numerical
methods, statistics, and machine learning. Lastly, practitioners should prioritize
reproducibility by documenting uncertainty assumptions, sampling strategies, and prior
models, aligning with emerging international standards for verification and validation in
scientific computing (Sullivan, 2015). In sum, the integration of UQ into both research and

applied engineering contexts promises to enhance model credibility, accelerate innovation,
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and improve decision robustness across increasingly complex, data-driven engineering

systems.
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