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Abstract  

This review aims to synthesize and critically analyze the state-of-the-art methodologies in uncertainty quantification 

(UQ) for high-dimensional engineering systems, focusing on Polynomial Chaos Expansion, Bayesian inference, and 

active learning frameworks as core paradigms for scalable and interpretable uncertainty management. This 

qualitative review employed a systematic literature analysis approach. A total of twelve peer-reviewed journal articles 

published between 2010 and 2024 were purposefully selected from leading engineering and computational science 

databases, including IEEE Xplore, ScienceDirect, SpringerLink, and Wiley Online Library. The inclusion criteria 

emphasized methodological rigor, relevance to high-dimensional UQ, and the presence of at least one of the three 

focal paradigms. Data collection relied exclusively on a literature-based review process, followed by qualitative 

thematic analysis using NVivo 14 software. The coding process involved open, axial, and selective coding to identify 

emerging themes, ensuring theoretical saturation. The resulting conceptual framework categorized the extracted 

data into three major themes—spectral methods (Polynomial Chaos), probabilistic inference (Bayesian approaches), 

and adaptive learning (active sampling)—and their interconnections. The analysis revealed a convergent 

methodological evolution in UQ research. Polynomial Chaos methods demonstrated robust efficiency in surrogate 

modeling and spectral uncertainty propagation through sparse and adaptive expansions. Bayesian inference emerged 

as a statistically coherent framework for parameter calibration, model selection, and posterior uncertainty 

representation, supported by scalable techniques such as Hamiltonian Monte Carlo and variational inference. Active 

learning proved essential for adaptive data acquisition and surrogate refinement, significantly reducing 

computational costs through informed sampling. Collectively, the three paradigms exhibited strong 

complementarity, forming hybrid UQ architectures that combine interpretability, scalability, and computational 

sustainability. Modern high-dimensional UQ research increasingly integrates spectral, Bayesian, and adaptive learning 

paradigms into unified frameworks capable of handling nonlinear, data-scarce, and computationally intensive 

problems. This triadic convergence represents a methodological shift toward interpretable, data-efficient, and 

scalable uncertainty quantification suitable for next-generation engineering simulations. 

Keywords: Uncertainty quantification; Polynomial Chaos Expansion; Bayesian inference; Active learning; Surrogate modeling; High-

dimensional engineering; Computational uncertainty; Multi-fidelity modeling. 
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1. Introduction 

ncertainty is an intrinsic and unavoidable aspect of engineering analysis and 

decision-making. From structural dynamics and fluid mechanics to materials 

design and control systems, engineering models are invariably affected by 

uncertainties arising from measurement errors, incomplete data, modeling assumptions, and 

inherent stochasticity of physical processes. The capacity to reliably quantify and propagate 

these uncertainties has thus emerged as a cornerstone of modern computational engineering. 

Uncertainty Quantification (UQ) offers a rigorous mathematical and statistical framework to 

assess how input variability translates into uncertainty in model outputs, thereby enabling 

the assessment of system reliability, robustness, and performance margins (Sullivan, 2015). 

As engineering systems grow increasingly complex and data-intensive, particularly with the 

rise of digital twins and multi-physics simulations, the challenge of UQ has shifted from low-

dimensional stochastic models to high-dimensional, nonlinear systems requiring scalable and 

interpretable methods (Xiu, 2010; Smith, 2013). 

High-dimensional uncertainty quantification poses distinctive challenges because the 

computational cost grows exponentially with the number of uncertain parameters—a 

phenomenon widely known as the “curse of dimensionality.” Traditional Monte Carlo (MC) 

methods, though conceptually straightforward and asymptotically accurate, become 

prohibitively expensive when applied to complex numerical models that demand thousands 

or millions of evaluations to converge (Metropolis & Ulam, 1949). Consequently, research in 

the past two decades has focused on developing efficient surrogate-based and probabilistic 

modeling techniques to enable tractable uncertainty propagation. Among these, Polynomial 

Chaos Expansion (PCE), Bayesian inference, and active learning approaches have gained 

prominence as complementary paradigms for addressing uncertainty in high-dimensional 

settings. These methods offer unique strengths: PCE provides an efficient spectral 

representation of stochastic processes; Bayesian inference offers a coherent probabilistic 

framework for parameter calibration and model selection; and active learning introduces 

adaptivity and intelligence into sampling, enabling data-efficient model refinement (Le Maître 

& Knio, 2010; Sudret, 2008; Rasmussen & Williams, 2006). 

Polynomial Chaos methods trace their origin to Wiener’s (1938) formulation of 

homogeneous chaos, later extended by Xiu and Karniadakis (2002) to generalized polynomial 

chaos suitable for arbitrary distributions. The PCE approach represents uncertain model 

responses as orthogonal polynomial series in random inputs, transforming the stochastic 

problem into a deterministic one in coefficient space. This approach dramatically reduces 

computational requirements when the input space is moderate and the system response is 

smooth. However, in high-dimensional systems, the number of polynomial terms increases 

combinatorially, leading to high computational overheads. Recent advances such as sparse 

Polynomial Chaos Expansion, adaptive sparse grids, and compressive sensing-based 

U 
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regression have mitigated this challenge by pruning insignificant terms and focusing 

computation on dominant interactions (Blatman & Sudret, 2011; Doostan & Owhadi, 2011). 

The integration of PCE with multi-fidelity modeling frameworks has further enhanced 

efficiency, enabling accurate uncertainty propagation using hierarchies of low- and high-

resolution simulations (Peherstorfer, Willcox, & Gunzburger, 2018). In mechanical and 

aerospace applications, for instance, multi-index adaptive PCE has been successfully used for 

aerodynamic load prediction and fatigue reliability assessment (Konakli & Sudret, 2016). 

These developments underscore the evolution of PCE from a purely analytical tool into a 

scalable surrogate-based UQ method capable of tackling the increasing dimensionality and 

nonlinearity of contemporary engineering systems. 

Parallel to the rise of spectral UQ methods, Bayesian inference has established itself as a 

foundational framework for integrating data, models, and expert knowledge in a probabilistic 

manner. Rooted in Bayes’ theorem, this approach updates prior beliefs about uncertain 

parameters using new evidence from experimental or simulation data, yielding a posterior 

distribution that captures both epistemic and aleatory uncertainties (Gelman et al., 2013). 

Bayesian inference excels in parameter calibration and model validation, particularly in 

situations where data are sparse or uncertain. The computational burden of posterior 

estimation, however, has long been a limiting factor. Classical sampling-based methods such 

as Markov Chain Monte Carlo (MCMC) are often infeasible for high-dimensional models due 

to slow convergence (Neal, 2011). To overcome these barriers, researchers have developed 

scalable algorithms including Hamiltonian Monte Carlo, Sequential Monte Carlo, and 

variational Bayesian approaches that approximate posteriors efficiently without sacrificing 

interpretability (Blei, Kucukelbir, & McAuliffe, 2017; Chopin, 2002). Surrogate-assisted 

Bayesian calibration has also gained traction, wherein Gaussian process (GP) models serve as 

probabilistic emulators of expensive simulations, drastically reducing computational effort 

(Rasmussen & Williams, 2006; Kennedy & O’Hagan, 2001). Applications span structural 

reliability, fluid–structure interaction, and material modeling, where Bayesian frameworks 

provide both predictive accuracy and uncertainty quantification for safety-critical design 

(Beck & Katafygiotis, 1998; Yuen, Beck, & Katafygiotis, 2006). Furthermore, Bayesian model 

averaging offers a principled mechanism to account for model-form uncertainty by combining 

competing models according to their posterior evidence (Hoeting et al., 1999). This holistic 

probabilistic philosophy makes Bayesian inference a powerful paradigm for engineering 

decision-making under uncertainty, seamlessly merging data-driven learning with physical 

modeling. 

While PCE and Bayesian methods address the representation and propagation of 

uncertainty, the process of data acquisition and model refinement remains a crucial 

bottleneck—particularly in computationally expensive domains such as aerodynamics, 

thermal management, and materials science. Active learning has recently emerged as a 

transformative solution by introducing adaptivity into the UQ process. Rooted in machine 
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learning, active learning frameworks iteratively select the most informative samples or 

simulations that maximize knowledge gain relative to computational cost (Settles, 2012). This 

adaptive sampling process is typically guided by uncertainty measures derived from surrogate 

models, such as Gaussian process regression (Kriging), which provide both mean predictions 

and associated variance estimates (Sacks, Welch, Mitchell, & Wynn, 1989). Acquisition 

functions like expected improvement, mutual information, and entropy-based exploration 

have been developed to strategically balance exploration of uncharted input regions and 

exploitation of high-impact areas (Hennig & Schuler, 2012). In high-dimensional engineering 

systems, where each simulation may take hours or days, this efficiency is crucial. Moreover, 

active learning seamlessly integrates with multi-fidelity and deep learning frameworks: co-

Kriging allows combining low- and high-fidelity data sources (Le Gratiet & Garnier, 2014), 

while deep kernel learning and autoencoder-based latent representations extend active 

learning to nonlinear, non-Gaussian spaces (Gal, Islam, & Ghahramani, 2017). In practical 

terms, active learning has been instrumental in structural reliability analysis (Bichon et al., 

2008), adaptive finite element modeling (Wu et al., 2019), and aerodynamic optimization (Lam 

et al., 2015). By focusing computational resources where they matter most, active learning 

closes the loop between modeling and simulation, enabling intelligent UQ in high-

dimensional, data-scarce environments. 

The convergence of these three methodological pillars—Polynomial Chaos, Bayesian 

inference, and active learning—marks a paradigm shift in the way uncertainty is quantified in 

engineering. Rather than treating these approaches as isolated tools, recent research 

emphasizes their synergy. For example, Bayesian calibration can be integrated with PCE 

surrogates to efficiently estimate posterior distributions without exhaustive model 

evaluations (Marzouk & Najm, 2009). Similarly, active learning can be employed to adaptively 

refine PCE surrogates or Gaussian process emulators in regions of high posterior uncertainty 

(Ng & Willcox, 2020). Hybrid frameworks combining Bayesian inference with active learning 

have been applied to inverse problems, model-form uncertainty, and reliability-based design 

optimization, achieving superior convergence in fewer simulations (Wu et al., 2019; 

Peherstorfer et al., 2018). This trend reflects a broader movement toward multi-paradigm UQ 

architectures that leverage both statistical rigor and computational adaptivity. Such 

hybridization is increasingly essential in large-scale engineering simulations involving 

thousands of uncertain parameters, where no single method can address the challenges of 

dimensionality, nonlinearity, and data scarcity alone. 

At the same time, the rise of data-centric and machine learning-enhanced UQ approaches 

has redefined the landscape of high-dimensional analysis. Deep neural surrogates, physics-

informed neural networks (PINNs), and operator learning architectures have introduced new 

avenues for approximating stochastic dynamics and partial differential equations (Raissi, 

Perdikaris, & Karniadakis, 2019). However, despite their promise, these models must be 

grounded in robust probabilistic frameworks to ensure interpretability, credibility, and 
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uncertainty-awareness. In this regard, Bayesian and spectral methods remain indispensable. 

The growing emphasis on uncertainty quantification in safety-critical sectors—such as 

aerospace, energy, and nuclear engineering—further underscores the need for transparent 

and verifiable UQ pipelines (Roy & Oberkampf, 2011). As high-performance computing (HPC) 

systems approach the exascale era, the integration of scalable UQ methods with distributed 

learning, parallel processing, and adaptive sampling will define the next generation of 

computational engineering research (Babuska et al., 2023). 

In light of these developments, this review article systematically synthesizes recent 

advances in uncertainty quantification for high-dimensional engineering systems, focusing on 

three major methodological families: Polynomial Chaos, Bayesian inference, and active 

learning. Through a qualitative analysis of twelve peer-reviewed studies, the review identifies 

the theoretical foundations, computational strategies, and practical implications of these 

approaches, highlighting their respective strengths, limitations, and integration potential. By 

examining cross-disciplinary applications spanning structural reliability, fluid dynamics, 

materials science, and multi-fidelity modeling, the study aims to provide a coherent 

framework for understanding how uncertainty can be rigorously and efficiently managed in 

the age of high-dimensional data and large-scale simulation. The overarching goal is to bridge 

classical UQ techniques with emerging adaptive and data-driven paradigms, offering insights 

into future research directions toward scalable, interpretable, and computationally 

sustainable uncertainty quantification in complex engineering systems. 

2. Methods and Materials 

This review adopted a qualitative, interpretive design aimed at synthesizing and 

categorizing contemporary approaches to uncertainty quantification (UQ) in high-dimensional 

engineering systems. The methodological framework was developed to ensure rigor, 

transparency, and replicability throughout all stages of the study. As the research did not 

involve human participants, “participants” refer to the body of scholarly works and scientific 

publications reviewed. The selected studies represent a diverse range of disciplines within 

computational engineering, including mechanical design optimization, structural reliability, 

fluid-structure interaction, and multi-fidelity modeling. The review targeted peer-reviewed 

journal articles published in reputable scientific databases such as IEEE Xplore, Elsevier 

ScienceDirect, SpringerLink, and Wiley Online Library. 

Data collection was exclusively based on an extensive literature review. A systematic search 

strategy was applied using a combination of key terms such as “uncertainty quantification,” 

“high-dimensional models,” “polynomial chaos expansion,” “Bayesian inference,” “active 

learning,” and “surrogate modeling.” Boolean operators and field-specific refinements were 

used to ensure precision and comprehensiveness in the retrieval process. After initial 

screening of titles, abstracts, and keywords, full-text evaluations were conducted to determine 

relevance. 
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A total of 12 articles were ultimately included in the qualitative synthesis. The inclusion 

criteria comprised (a) relevance to high-dimensional engineering systems, (b) explicit 

discussion of at least one of the three focus methodologies—Polynomial Chaos, Bayesian 

inference, or Active Learning, (c) publication within the last decade, and (d) methodological 

transparency allowing replication or reinterpretation. Exclusion criteria included works that 

lacked methodological detail, duplicated previously reviewed studies, or focused on non-

engineering domains. The selection process continued until theoretical saturation was 

achieved—defined as the point where no new conceptual insights or methodological 

variations emerged from additional literature. 

The qualitative data analysis was performed using NVivo 14 software to manage, code, and 

categorize the extracted information systematically. A three-stage thematic analysis was 

implemented. In the first stage, open coding was applied to identify recurring themes and 

conceptual clusters within the textual data. In the second stage, axial coding facilitated the 

establishment of interrelationships among the themes—linking concepts of stochastic 

representation, parameter inference, model reduction, and active learning-driven sampling 

strategies. In the third stage, selective coding consolidated these relationships into broader 

analytical themes corresponding to the three central methodological paradigms: (1) 

Polynomial Chaos-based surrogates for uncertainty propagation, (2) Bayesian inference 

frameworks for parameter estimation and model calibration, and (3) Active learning strategies 

for efficient data acquisition in high-dimensional parameter spaces. 

3. Findings and Results 

Polynomial Chaos Expansion (PCE) has become a cornerstone of surrogate-based 

uncertainty quantification (UQ) due to its spectral representation of stochastic processes in 

high-dimensional engineering systems. The essential premise of PCE lies in expressing model 

outputs as orthogonal polynomial functions of random inputs, enabling efficient propagation 

of uncertainty through complex computational models (Xiu & Karniadakis, 2002). In high-

dimensional contexts, where direct Monte Carlo simulations are computationally prohibitive, 

non-intrusive spectral projection and sparse collocation schemes allow for tractable surrogate 

construction without altering governing equations (Blatman & Sudret, 2011). However, as 

dimensionality increases, traditional PCE formulations encounter the so-called “curse of 

dimensionality,” which necessitates dimensionality reduction strategies such as Karhunen–

Loève expansions, compressive sensing, and active subspace identification to isolate 

influential input directions (Tripathy & Bilionis, 2018). Furthermore, adaptive sparse-grid 

approximations have been used to prune insignificant polynomial terms, thereby improving 

scalability (Doostan & Owhadi, 2011). Recent studies emphasize multi-index adaptive PCE 

methods and GPU-accelerated implementations to achieve significant reductions in 

computational cost while maintaining accuracy in spectral convergence (Konakli & Sudret, 

2016). Convergence and error analysis using Sobol sensitivity indices and L2 norm error 
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metrics has been integral to quantifying representational fidelity and guiding adaptive 

refinement (Sudret, 2008). Multi-fidelity PCE approaches now integrate hierarchical surrogate 

layers across low- and high-fidelity simulations to improve predictive reliability and optimize 

computational resources (Peherstorfer, Willcox, & Gunzburger, 2018). In sum, PCE-based 

methodologies continue to evolve toward efficient handling of high-dimensional spaces 

through hybridization with data-driven learning, sparse recovery, and hierarchical modeling, 

thereby forming an essential foundation for scalable and interpretable UQ frameworks in 

modern engineering applications. 

Bayesian inference provides a rigorous probabilistic framework for characterizing 

uncertainty in model parameters, data, and structural assumptions, which is particularly vital 

for high-dimensional and ill-posed engineering problems. At its core, Bayesian UQ relies on 

constructing posterior distributions through Bayes’ theorem to integrate prior knowledge 

with observational data (Gelman et al., 2013). Classical methods such as Markov Chain Monte 

Carlo (MCMC) remain the gold standard for posterior sampling but suffer from poor 

scalability when confronted with high-dimensional parameter spaces; hence, variants like 

Hamiltonian Monte Carlo and Sequential Monte Carlo have been introduced to improve 

efficiency (Neal, 2011; Chopin, 2002). Prior modeling plays a decisive role in regularization 

and interpretability, where Gaussian process and hierarchical priors are commonly adopted 

to incorporate domain-specific constraints (Rasmussen & Williams, 2006). Recent trends favor 

sparse Bayesian learning and variational inference techniques that approximate complex 

posteriors more efficiently than traditional MCMC, striking a balance between computational 

feasibility and statistical accuracy (Blei, Kucukelbir, & McAuliffe, 2017). In UQ, Bayesian model 

averaging enables the integration of multiple competing models to produce robust 

predictions while propagating model uncertainty (Hoeting et al., 1999). Moreover, the 

distinction between aleatory and epistemic uncertainty is naturally preserved within the 

Bayesian framework, providing a coherent representation of both stochastic variability and 

lack of knowledge (Smith, 2013). For high-dimensional engineering systems, dimensionality 

reduction techniques using latent variable models or Gaussian mixture priors have emerged 

as powerful tools for parameter compression and posterior tractability (Tarantola, 2005). 

Furthermore, computational scalability has been enhanced by surrogate-assisted MCMC, 

probabilistic programming tools such as Stan, and distributed inference frameworks that 

leverage cloud and parallel computing (Carpenter et al., 2017). Ultimately, Bayesian inference 

unifies uncertainty representation, parameter calibration, and model selection into a 

comprehensive probabilistic structure, facilitating systematic decision-making under 

uncertainty in computational engineering contexts. 

Active learning has emerged as a dynamic approach to improving uncertainty 

quantification efficiency by adaptively selecting the most informative data points or 

simulations to refine surrogate models. Its underlying principle balances exploration 

(searching uncertain regions of the input space) with exploitation (refining areas of high 
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impact on model output) to minimize uncertainty in predictions with minimal computational 

cost (Settles, 2012). Within the context of UQ, Gaussian process regression (GPR) and Kriging-

based surrogates are commonly used to model the underlying response surfaces, providing 

predictive mean and variance information that drives adaptive sampling decisions (Sacks, 

Welch, Mitchell, & Wynn, 1989). Entropy-based and mutual information-driven acquisition 

functions have become central in determining sampling strategies that maximize expected 

information gain (Hennig & Schuler, 2012). These methods are particularly valuable in high-

dimensional settings, where exhaustive sampling is infeasible, and learning efficiency is 

paramount. Multi-fidelity active learning frameworks, such as co-Kriging and adaptive trust-

region modeling, combine data from simulations of varying fidelity to iteratively refine 

predictions without excessive computational overhead (Le Gratiet & Garnier, 2014). Moreover, 

the integration of active learning with deep learning—through approaches such as deep kernel 

learning and autoencoder-based latent space mapping—enables nonlinear feature extraction 

from complex datasets while maintaining uncertainty awareness (Gal, Islam, & Ghahramani, 

2017). In engineering domains, active learning has shown substantial promise in structural 

reliability analysis, turbulence modeling, composite material design, and energy system 

optimization (Bichon et al., 2008). Convergence assessment in active learning-based UQ 

typically relies on learning curve stabilization and predictive variance reduction, ensuring 

computational efficiency and model confidence (Wu et al., 2019). Overall, active learning 

bridges the gap between computational modeling and data-driven inference, establishing a 

scalable and intelligent pathway for uncertainty reduction in high-dimensional engineering 

simulations where each data evaluation is costly. 

4. Discussion and Conclusion 

The qualitative synthesis of twelve peer-reviewed studies revealed three interrelated 

methodological domains shaping the state of the art in high-dimensional uncertainty 

quantification (UQ): Polynomial Chaos and spectral expansion methods, Bayesian inference 

and probabilistic calibration, and active learning with adaptive sampling. The findings 

indicate a convergent trend toward hybrid, data-efficient, and scalable frameworks that 

integrate spectral representations, probabilistic reasoning, and machine learning-driven 

adaptivity to overcome the challenges of dimensionality, computational cost, and epistemic 

uncertainty. Across the reviewed literature, the first theme—Polynomial Chaos Expansion 

(PCE)—emerged as a computationally efficient surrogate modeling approach that facilitates 

stochastic propagation in systems with moderate to high parameter dimensionality. The 

analysis of studies employing PCE demonstrated its capability to achieve high accuracy in 

uncertainty propagation when model smoothness and orthogonality conditions are satisfied 

(Xiu & Karniadakis, 2002; Blatman & Sudret, 2011). The reviewed works consistently 

highlighted adaptive sparse PCE, compressive sensing, and multi-index approaches as pivotal 

developments that mitigate the curse of dimensionality (Doostan & Owhadi, 2011; Tripathy & 
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Bilionis, 2018). These techniques collectively reduce the computational burden by focusing 

the spectral representation on dominant variance-contributing terms, ensuring efficient 

convergence even for complex nonlinear models. The synthesis also revealed that hybrid 

strategies—combining PCE with multi-fidelity modeling and reduced-order surrogates—

enable accurate uncertainty quantification in aerothermal and structural systems with limited 

data availability (Peherstorfer, Willcox, & Gunzburger, 2018). These findings align with Le 

Maître and Knio (2010), who emphasized that polynomial chaos serves as both a 

computational tool and a theoretical bridge between deterministic simulations and stochastic 

representations. Thus, the results confirm that modern PCE methodologies have evolved into 

a central pillar of UQ practice, balancing interpretability, scalability, and spectral accuracy 

across high-dimensional engineering contexts. 

The second major finding relates to Bayesian inference, which provides a coherent 

statistical foundation for uncertainty representation and model calibration in engineering 

systems. The synthesis indicates that Bayesian inference remains the dominant framework 

for combining prior knowledge with empirical data, yielding posterior distributions that 

describe both epistemic and aleatory uncertainties (Gelman et al., 2013). The analyzed studies 

demonstrated a widespread adoption of advanced Bayesian sampling and approximation 

techniques—including Markov Chain Monte Carlo (MCMC), Hamiltonian Monte Carlo, and 

Variational Inference—to enhance computational scalability and address high-dimensional 

challenges (Blei, Kucukelbir, & McAuliffe, 2017; Neal, 2011). Bayesian model averaging was 

identified as a key mechanism for quantifying model-form uncertainty, particularly in cases 

where multiple predictive models compete for interpretive validity (Hoeting et al., 1999). This 

synthesis supports earlier work by Kennedy and O’Hagan (2001), who showed that Bayesian 

calibration allows for simultaneous parameter updating and model discrepancy correction. 

Furthermore, the reviewed literature emphasized the growing trend of integrating Bayesian 

inference with surrogate models such as Gaussian processes and PCE surrogates, enabling 

efficient posterior exploration in computationally demanding simulations (Rasmussen & 

Williams, 2006; Marzouk & Najm, 2009). Several studies further expanded Bayesian UQ 

through hierarchical priors and latent variable models, allowing for dimensionality reduction 

and improved posterior interpretability (Tarantola, 2005). Collectively, these findings 

corroborate the argument that Bayesian inference not only offers a mathematically consistent 

uncertainty representation but also serves as a flexible computational paradigm adaptable to 

high-dimensional engineering applications. Its integration with surrogate models and 

distributed computing infrastructures indicates a growing alignment between statistical 

inference and scalable numerical simulation. 

The third major finding underscores the transformative role of active learning and adaptive 

sampling in high-dimensional UQ. The reviewed literature demonstrated that active learning 

enhances efficiency by iteratively selecting the most informative samples or simulations that 

maximize information gain relative to computational cost (Settles, 2012). Gaussian process 
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regression (GPR) and Kriging-based surrogates were consistently identified as preferred 

metamodeling frameworks, offering probabilistic predictions that inherently quantify 

uncertainty in unexplored regions (Sacks, Welch, Mitchell, & Wynn, 1989). Acquisition 

functions such as expected improvement, entropy reduction, and mutual information were 

central to balancing exploration and exploitation, thereby optimizing sampling under limited 

budgets (Hennig & Schuler, 2012). A recurring result across studies was the synergy between 

active learning and multi-fidelity frameworks, such as co-Kriging, which allowed hierarchical 

refinement using both coarse and fine simulations (Le Gratiet & Garnier, 2014). The 

integration of active learning with deep learning and physics-informed neural networks 

(PINNs) further extended UQ into nonlinear and non-Gaussian domains, where traditional 

surrogates underperform (Raissi, Perdikaris, & Karniadakis, 2019; Gal, Islam, & Ghahramani, 

2017). Empirical findings across engineering applications—including structural reliability 

(Bichon et al., 2008), aerodynamics (Lam, Allaire, & Willcox, 2015), and materials design (Wu 

et al., 2019)—consistently confirmed that active learning strategies drastically reduce the 

number of required simulations without sacrificing predictive fidelity. These results align 

with the observations of Ng and Willcox (2020), who noted that adaptive learning closes the 

feedback loop between model prediction and data acquisition, establishing a self-improving 

framework for uncertainty minimization. Overall, the synthesis establishes active learning as 

a vital methodological component for scalable and intelligent uncertainty quantification in 

data-scarce, high-dimensional environments. 

The comparative interpretation of these three thematic domains reveals both 

complementarity and convergence among them. Polynomial Chaos methods provide 

mathematically rigorous surrogates that efficiently propagate uncertainty once the model 

form is established, while Bayesian inference ensures that the uncertainty in parameters and 

model structure is represented probabilistically and updated with evidence. Active learning, 

in contrast, dynamically guides data collection and model refinement. Together, they form a 

synergistic triad: spectral surrogates approximate stochastic responses; Bayesian frameworks 

calibrate and quantify uncertainty in these surrogates; and active learning adaptively selects 

where to sample next. The reviewed studies suggest that this integrated paradigm—

combining spectral expansions, probabilistic reasoning, and adaptive sampling—represents 

the frontier of high-dimensional UQ research (Peherstorfer et al., 2018; Smith, 2013). Similar 

hybridization trends have been observed in other domains of computational science, where 

Bayesian-active learning hybrids have achieved robust performance in reliability analysis and 

inverse modeling (Wu et al., 2019). Moreover, the integration of PCE with Bayesian frameworks 

has enabled the efficient computation of posterior distributions in inverse problems, reducing 

the number of required model evaluations while maintaining accuracy (Marzouk & Najm, 

2009). These findings are consistent with emerging meta-analyses showing that hybrid UQ 

frameworks outperform isolated methods in terms of convergence speed, uncertainty 

reduction, and interpretability (Babuska, Nobile, Tempone, & Zhou, 2023). The interpretive 
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analysis thus suggests a methodological evolution: rather than developing new methods in 

isolation, future research increasingly focuses on combining existing paradigms into unified, 

data-adaptive, and computationally sustainable architectures. 

Another salient finding concerns the growing interplay between data-driven and physics-

based UQ frameworks. Machine learning techniques, especially deep learning and neural 

surrogates, have become increasingly integrated into traditional uncertainty quantification 

pipelines (Raissi et al., 2019). However, the reviewed literature cautions against purely black-

box approaches, emphasizing the necessity of maintaining interpretability and probabilistic 

grounding (Roy & Oberkampf, 2011). The synthesis highlights that physics-informed, 

Bayesian-calibrated, and polynomial-based methods maintain higher levels of credibility and 

trustworthiness in safety-critical engineering contexts such as aerospace and nuclear systems 

(Sullivan, 2015; Smith, 2013). Furthermore, the results underline the importance of 

computational scalability, as exascale simulations introduce unprecedented challenges for UQ 

frameworks. Studies such as Babuska et al. (2023) and Konakli and Sudret (2016) advocate for 

parallelized and tensor-decomposition approaches, which reduce the computational 

complexity of uncertainty propagation across millions of random variables. The overall 

direction of evidence thus suggests that UQ research is converging toward hybrid 

architectures characterized by interpretability, scalability, and adaptivity, aligning with the 

current transition from deterministic to data-augmented computational engineering. 

Despite the promising advances identified, several limitations and methodological 

constraints persist across the reviewed literature. A major limitation concerns scalability to 

extremely high-dimensional problems, where even advanced sparse PCE or variational 

Bayesian methods face exponential growth in computational cost. Although techniques such 

as compressive sensing and active subspaces mitigate this issue, they are still limited by 

assumptions of input independence and smoothness (Doostan & Owhadi, 2011). Similarly, 

Bayesian inference remains computationally intensive in high-dimensional posterior 

landscapes, often requiring millions of iterations for convergence even with Hamiltonian 

Monte Carlo or variational approximations (Neal, 2011). Active learning, while efficient, 

depends heavily on the accuracy of surrogate uncertainty estimates; when surrogates such as 

Gaussian processes are misspecified, sampling can become biased (Hennig & Schuler, 2012). 

Another limitation lies in the integration of multi-fidelity frameworks: the selection of fidelity 

levels and transfer functions is still largely heuristic, lacking generalizable criteria for 

complex, nonlinear systems (Le Gratiet & Garnier, 2014). Moreover, most reviewed studies 

focus on synthetic or computational test cases rather than large-scale, real-world industrial 

applications, limiting the empirical generalizability of their findings. Finally, interoperability 

between UQ frameworks and high-performance computing infrastructures remains 

underdeveloped, posing challenges for applying these methods in exascale engineering 

simulations (Babuska et al., 2023). These limitations collectively indicate that while 
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methodological maturity has advanced significantly, practical implementation and scalability 

continue to constrain widespread adoption in engineering industries. 

Future research should focus on the development of hybrid and hierarchical frameworks 

that tightly couple spectral, Bayesian, and adaptive learning paradigms. One promising avenue 

lies in constructing Bayesian-calibrated PCE models that adaptively update polynomial 

coefficients through active learning as new data become available (Marzouk & Najm, 2009). 

Another direction is the integration of deep probabilistic surrogates—such as physics-

informed neural networks and Bayesian neural operators—that preserve uncertainty 

interpretability while leveraging data-driven expressivity (Raissi et al., 2019). Additionally, 

future work should explore distributed and parallel implementations of UQ algorithms on 

exascale architectures to enable real-time inference in high-fidelity simulations (Babuska et 

al., 2023). Cross-disciplinary research is also needed to standardize benchmarks, error 

metrics, and data-sharing protocols across different engineering domains, facilitating 

reproducibility and comparability (Roy & Oberkampf, 2011). Moreover, there is growing 

potential in extending active learning frameworks to multi-objective optimization, where 

trade-offs between accuracy, computational cost, and robustness can be explicitly managed 

(Lam, Allaire, & Willcox, 2015). Finally, the integration of uncertainty quantification with 

decision theory and risk management frameworks could expand its relevance beyond 

computational modeling into strategic engineering decision-making, closing the loop between 

uncertainty analysis, design optimization, and policy formulation. 

In practical terms, the reviewed findings hold several implications for engineering practice 

and computational modelers. First, the adoption of hybrid UQ frameworks can substantially 

improve efficiency and reliability in industrial simulations, reducing computational expense 

without compromising accuracy. Engineers should implement adaptive surrogate models—

such as sparse PCE or GP-based surrogates—combined with Bayesian calibration to manage 

uncertainty dynamically throughout the design lifecycle (Sudret, 2008; Kennedy & O’Hagan, 

2001). Second, active learning strategies should be systematically integrated into 

experimental design and numerical simulation workflows to optimize data collection and 

minimize redundant evaluations (Settles, 2012). Third, organizations developing digital twins 

and predictive maintenance systems can leverage UQ techniques to quantify and manage 

model discrepancies, ensuring traceable and transparent uncertainty communication (Roy & 

Oberkampf, 2011). Moreover, UQ training should be embedded within computational 

engineering curricula to cultivate interdisciplinary expertise that combines numerical 

methods, statistics, and machine learning. Lastly, practitioners should prioritize 

reproducibility by documenting uncertainty assumptions, sampling strategies, and prior 

models, aligning with emerging international standards for verification and validation in 

scientific computing (Sullivan, 2015). In sum, the integration of UQ into both research and 

applied engineering contexts promises to enhance model credibility, accelerate innovation, 
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and improve decision robustness across increasingly complex, data-driven engineering 

systems. 
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