Received date: 21 Jun 2025
Revised date: 28 Jul 2025

Accepted date: 03 Aug 2025
Published date: 01 Sep 2025

Scientific Machine Learning for PDEs: Operators,
Surrogates, and Error-Controlled Multi-Fidelity Schemes

Elif Yilmaz!'@®, Omar Al-Khatib**

Citation: Yilmaz, E., & Al-Khatib, O. (2025). Scientific Machine Learning for PDEs: Operators, Surrogates, and Error-Controlled Multi-
Fidelity Schemes. Multidisciplinary Engineering Science Open, 2, 1-12.

Abstract

This review aims to synthesize recent advances in scientific machine learning (SciML) for solving partial differential
equations (PDEs), focusing on operator learning, surrogate modeling, and error-controlled multi-fidelity frameworks
that integrate data-driven intelligence with physical consistency. This study adopted a qualitative, interpretive review
design based on a systematic literature analysis of thirteen peer-reviewed journal articles published between 2019
and 2025. The data collection process relied exclusively on scholarly databases such as Scopus, ScienceDirect, and
IEEE Xplore, targeting works addressing neural operator architectures, hybrid physics-ML couplings, and multi-
fidelity adaptation. All sources were imported into Nvivo 14 software for coding and thematic synthesis. Open, axial,
and selective coding cycles were performed until theoretical saturation was achieved. Four main categories—operator
learning paradigms, surrogate and reduced-order models, error-controlled multi-fidelity schemes, and computational
integration—were extracted and structured according to their conceptual relationships and methodological
contributions. The review identified that operator learning (e.g., DeepONet, Fourier Neural Operator, and physics-
informed variants) provides a scalable framework for learning function-to-function mappings across PDE families.
Surrogate modeling emerged as an efficient approach for reduced-order representation and hybrid PDE-ML coupling,
while sparse, compressive, and latent-space techniques improved model interpretability and efficiency. Multi-fidelity
architectures, integrating uncertainty quantification and adaptive refinement, offered robust mechanisms for cost-
accuracy optimization and error control. Finally, the implementation trend emphasized high-performance
computing, benchmarking (PDEBench), hybrid symbolic-numeric integration, and reproducibility practices as
essential to operational deployment. Scientific machine learning for PDEs is transitioning from experimental novelty
to a mature computational paradigm that unifies physics-informed theory, data-driven surrogacy, and adaptive error
control. Its promise lies in producing generalizable, trustworthy, and computationally efficient solvers that can
accelerate discovery across domains such as fluid mechanics, climate modeling, and structural dynamics while

maintaining physical interpretability and numerical rigor.
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1. Introduction

artial differential equations (PDEs) are foundational to the mathematical

modeling of phenomena across physics, engineering, biology, and beyond: they

encode conservation laws, diffusion, wave propagation, fluid dynamics, elasticity,
reaction-diffusion interaction, and more. Yet classical numerical solvers—finite difference,
finite element, spectral, boundary element, or mesh-free methods—often incur high
computational cost, especially in high-dimensional or time-dependent scenarios, or under
parametric uncertainty. Over the past decade, scientific machine learning (SciML) has emerged
as a compelling paradigm that blends data-driven modeling with mechanistic, physics-based
constraints, offering new pathways to accelerate PDE solution, generalize across parameter
spaces, and embed uncertainty quantification (Iwema et al., 2023; Noordijk et al., 2024). In
particular, methods that learn operators (i.e. mappings between function spaces), construct
efficient surrogate models, and enable error-controlled multi-fidelity schemes have become
central to this evolving landscape.

The promise of SciML for PDEs lies in combining the flexibility of neural approximators
with the structure of known physics. While a purely data-driven neural network may struggle
to generalize or extrapolate, the imposition of physical regularization (such as residual losses,
boundary conditions, or conservation constraints) can guide learning toward physically
admissible solutions (Cuomo et al.,, 2022). Early and widely referenced instances include
physics-informed neural networks (PINNs), which embed the PDE residual into the loss
function so that the learned solution must satisfy the governing equations (Raissi, Perdikaris,
& Karniadakis, 2019; discussed in Cuomo et al., 2022). Such approaches have been extended
to time-dependent and space-time forms, inverse problems, parameter identification, and
control frameworks. But while PINNs and related approximators have achieved notable
success, they often suffer from slow convergence, poor performance in stiff or advection-
dominated regimes, sensitivity to weighting of loss terms, and limited scalability (e.g. methods
struggles for high Reynolds number flows or sharp features) (Wu et al., 2024). Moreover, in
many realistic settings, data is limited or expensive to generate, making pure neural
approximation brittle.

To address these challenges, recent research has gravitated toward operator learning—that
is, training neural models to approximate function-to-function mappings (or solution
operators) rather than individual input-output pairs. The Deep Operator Network (DeepONet)
and the Fourier Neural Operator (FNO) are prominent examples: DeepONet leverages a
branch-trunk architecture, while FNO exploits spectral convolution in the Fourier domain to
achieve mesh independence and faster evaluation (Brunton et al., 2023). Operator learning
offers the capacity to generalize across new initial or boundary conditions, parameter
configurations, or discretizations. In parallel, extensions such as multi-fidelity neural

operators have emerged whereby low-fidelity and high-fidelity data are fused to accelerate
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learning or reduce cost (Lu et al., 2022). For instance, multifidelity deep neural operators
combine operator-based surrogates at distinct fidelity levels to achieve efficiency gains while
preserving accuracy (Howard et al., 2023). Recent efforts also focus on achieving
discretization-independence: a model trained at one spatial resolution should transfer to finer
(or coarser) grids without retraining (Hauck et al., 2025). Thus, operator learning represents
a powerful and flexible paradigm, especially when combined with strategies for robustness,
interpretability, and constrained generalization.

Alongside operator learning, surrogate modeling and reduced-order learning are critical
strands in SciML for PDEs. Many physical systems exhibit low-dimensional structure or slow
manifold behavior; for such systems, one can compress the dynamics using autoencoders,
principal component analysis (PCA) combined with neural corrections, or hybrid projection-
neural methods (Kramer et al., 2024). The so-called operator inference method (Qian, Farcas,
& Willcox, 2021) generalizes reduced modeling to the functional analytic setting: it fits
polynomial operators in a latent space informed by data, with physics-informed structure
preserving interpretability and consistency. Hybrid coupling methods also appear: a classical
solver may provide a coarse prediction which is then corrected by a neural residual model, or
a learned surrogate may supply boundary conditions or corrections to a physics-based solver
(e.g. DPM frameworks) (Freund, MacArt, & Sirignano, 2019). Surrogates must balance fidelity
and efficiency, and techniques like sparse representations, compressive sensing, tensor
decompositions, or dictionary learning can reduce complexity further. Time-dependent
surrogate models—e.g. neural ODEs, recurrent networks, or latent continuous dynamics—are
common, and spatial surrogate methods exploit graph neural networks or convolutional
embeddings to encode geometry. A pressing challenge in surrogate modeling is generalization
across parameter regimes or geometry changes, which drives the need for robust, transferable
surrogates.

However, even highly expressive operator models or surrogates risk inaccuracy or
overconfidence, especially when extrapolating beyond training regimes. This motivates the
integration of error-controlled multi-fidelity frameworks. Multi-fidelity modeling—long
studied in engineering and optimization (Fernandez-Godino et al., 2023; Fernandez-Godino,
2023)—combines models of different resolutions or cost (low-fidelity, high-fidelity) into a
coherent prediction scheme. In SciML for PDEs, multi-fidelity architectures may hierarchically
blend neural approximators at different fidelity levels, or fuse predictions via co-kriging,
residual mapping, or ensemble blending (Sendrea et al., 2024). Error control is enabled by
mechanisms such as uncertainty quantification (UQ), residual estimation, posterior variance
propagation, or adaptive refinement: one may selectively elevate fidelity (e.g. fine-scale solver
calls) in regions of high uncertainty or error. Cost-accuracy tradeoffs are balanced often via
Pareto optimization or fidelity switching heuristics. Recent work in multifidelity deep
operators has shown how composite operator networks trained across fidelities can achieve

both computational gains and controlled error (Howard et al., 2023). Moreover, discretization-
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independent multifidelity operator learning approaches have demonstrated empirical
consistency across grid scales (Hauck et al., 2025). Such frameworks aim to embed reliability
into machine-learned solvers, which is essential for adoption in scientific and engineering
practice.

Bridging methodology and application requires robust computational implementation and
integration. Scalability demands high-performance implementations (GPU/TPU, distributed
training, mixed-precision, model parallelism). The reproducibility crisis in ML more broadly
underscores the need for standardized benchmarks and validation protocols; in the context
of PDEs, the PDEBench benchmark suite offers a diverse testbed for rigorous comparison
between machine learning models and classical solvers (MacKinlay et al.,, 2022). Hybrid
symbolic-numeric integration schemes, combining neural learning with symbolic discovery
or regression, enhance interpretability and may reveal structural insights (e.g. PDE-LEARN for
governing term discovery) (Stephany et al.,, 2024). Popular toolchains—such as DeepXDE,
NeuralPDE.jl, SimNet, or differentiable physics APIs—foster adoption, but real-world adoption
hinges on integration with domain solvers, solver coupling, and model deployment. Model
compression techniques (pruning, quantization), runtime adaptation, and on-device inference
are necessary steps toward deploying SciML-driven PDE solvers in real-time or embedded
contexts. Crucially, the methodological promise of SciML must be grounded: real-world
applications (e.g. fluid dynamics, climate models, subsurface flow, structural mechanics)
demand rigor, interpretability, and robustness across boundary and parametric regimes.

Despite impressive advancements, the SciML-for-PDE field is not without challenges or
caution. A recent meta-analysis (McGreivy & Hakim, 2024) argues that many purported
performance gains in PDE-ML literature arise from weak baselines or reporting bias: of
surveyed ML-for-PDE studies claiming superiority over classical solvers, 79 % used weak
baselines, and negative results were underreported. The authors call for stronger
benchmarking, better reporting practices, and humility about claims of generality. The so-
called “reproducibility crisis” in machine learning more broadly also looms over this domain.
Moreover, hybrid approaches must navigate tradeoffs between expressivity, training stability,
interpretability, and error quantification. Physics embedding strategies are not universal: in
some problems, unknown physics or discontinuities challenge differential regularization.
Multi-fidelity fusion must reconcile model mismatch, bias, and scalability. Operator learning
may struggle with extremely high-dimensional or chaotic PDEs, and surrogate models risk
overfitting or poor extrapolation outside trained parameter regimes.

Nonetheless, the convergence of operator learning, surrogate modeling, and multi-fidelity
calibration is carving a promising path. Individually, each strand addresses a critical
limitation: operator models scale across new conditions, surrogates enhance inference speed
in parameter sweeps, and multi-fidelity schemes bring reliability and adaptivity. When
integrated, they hold the potential for error-controlled, fast, and generalizable PDE solvers that

bridge the gap between data-driven flexibility and physical fidelity. This review seeks to chart
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this integrated map: first by categorizing and analyzing methodological advances (operator
frameworks, surrogates, multi-fidelity strategies, and computational integration), then by

identifying gaps, tensions, and promising directions.

2. Methods and Materials

This review adopted a qualitative, interpretive design aimed at synthesizing conceptual and
methodological developments in scientific machine learning (SciML) for partial differential
equations (PDEs). The study did not involve human or animal participants; instead, it
systematically examined published scholarly works as the primary “participants” in the
analysis. The design focused on identifying and comparing approaches related to operator
learning, surrogate modeling, and multi-fidelity error control frameworks in PDE-driven
systems.

Following a qualitative evidence synthesis strategy, the study sought to achieve theoretical
saturation, meaning the analysis was continued until no substantially new themes or
methodological insights emerged. This design ensured comprehensive coverage of conceptual
diversity within the selected body of literature while maintaining analytical depth.

Data collection was conducted exclusively through a literature review process. Peer-
reviewed journal articles and high-quality conference proceedings were identified through
searches in major academic databases, including Scopus, IEEE Xplore, SpringerLink, and
ScienceDirect. The search terms combined conceptual and methodological keywords such as

L T

“scientific machine learning,” “physics-informed neural networks,” “operator learning,”

.

“surrogate modeling,” “multi-fidelity schemes,” and “error control in PDEs.”

After an initial pool of approximately 85 papers was screened for relevance, duplication,
and methodological clarity, 13 articles were selected for full-text review and analysis. The
inclusion criteria required that studies explicitly address SciML methods applied to PDE-based
problems, introduce or evaluate surrogate or operator-based approaches, and discuss or
implement error-controlled or multi-fidelity strategies. Exclusion criteria involved papers
limited to purely theoretical mathematics or machine-learning applications unrelated to PDE
solving.

All bibliographic data, abstracts, and full texts were imported into Nvivo 14 software for
systematic organization, coding, and qualitative content analysis.

Data analysis followed a thematic and conceptual content analysis approach implemented
within Nvivo 14. Each article was coded according to emergent themes across three major
analytical dimensions:

1. Operator Learning Frameworks - including DeepONet, Fourier Neural Operators, and
kernel-based operator learning architectures;
2. Surrogate Modeling and Reduced-Order Techniques - addressing data-driven

approximations and hybrid PDE-ML coupling methods;
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3. Error-Controlled Multi-Fidelity Schemes - exploring adaptive learning pipelines,
uncertainty quantification, and physics-guided generalization strategies.

Open coding was first applied to identify recurring constructs and methodological
categories. These initial codes were then refined through axial coding, connecting related
themes such as data efficiency, transferability, and model interpretability. Selective coding
synthesized the results into overarching conceptual themes that link operator learning with
surrogate modeling and multi-fidelity integration.

Analytical rigor was maintained through iterative comparison of codes and memos until
theoretical saturation was reached—no new theoretical or methodological dimensions were
emerging from additional sources. The final themes formed the foundation for the Findings
and Discussion sections, providing an integrated synthesis of the state of knowledge and

methodological directions in scientific machine learning for PDEs.

3. Findings and Results

The first major theme, Operator Learning Paradigms, captures the diversity of approaches
to learning mappings between function spaces, especially in the context of PDEs. Within this
category, neural operators such as DeepONet and Fourier Neural Operator (FNO) feature
prominently as tools that aim to approximate solution operators in a mesh-independent way
(Kovachki, Lanthaler, & Stuart, 2024). These architectures are often augmented into physics-
informed operator models (so-called PINOs) by embedding PDE constraints or residual terms
directly into the training loss, thus enforcing consistency with known governing equations. In
efforts toward data efficiency, many recent works adopt strategies such as transfer learning,
unsupervised pretraining, or adaptive collocation to reduce the required number of training
pairs. In parallel, generalization and robustness concerns drive methods that incorporate
domain adaptation, spectral bias correction, or invariance-enforcing regularization into
operator training. Interpretability is also emerging: some studies explore operator saliency,
latent-space sensitivity maps, or attempts to reconstruct symbolic surrogates to better
understand what operators “learn.” Finally, multi-task operator designs and transfer learning
schemes attempt to train modular, reusable operator blocks that generalize across PDE
families or physical domains. Together, these subthemes reflect the methodological richness
and current frontiers in operator learning for PDEs.

The second theme, Surrogate Modeling and Reduced-Order Learning, addresses how
machine learning surrogates or reduced-order models (ROMs) approximate PDE solution
behavior without solving full-scale models. Within this theme, data-driven ROMs—often based
on autoencoders, PCA, or hybrid projection-neural models—seek low-dimensional latent
embeddings that capture essential dynamics. Hybrid PDE-ML coupling is another dominant
subtheme, where neural corrections or residual estimators are combined with classical solvers
to balance fidelity and flexibility. Sparse and compressive representations further refine

surrogate models by enforcing sparsity or exploiting dictionary learning or tensor
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decompositions to lower dimensional complexity. Temporal surrogates focus on modeling
time evolution (e.g. via neural ODEs, recurrent networks, or continuous latent dynamics),
while spatial surrogates encode geometric or grid structure (e.g. via convolutional mappings,
graph embeddings, or mesh encoders). A final subtheme concerns generalization and
scalability: surrogates that transfer across geometries, multi-parameter settings, or exploit
parallelism are central to pushing surrogate methods from proof-of-concept to practical
utility. Together, these subthemes reflect the dual pressures of accuracy and efficiency in
surrogate modeling for PDE-driven systems.

The third theme, Error-Controlled Multi-Fidelity Frameworks, emphasizes methods that
integrate multiple fidelity levels (e.g. coarse models, fine models, neural approximations) with
mechanisms to monitor or control error. Under this umbrella, multi-fidelity learning
architectures (such as hierarchical networks, bi-fidelity Gaussian processes, or fidelity
weighting schemes) formalize how models of differing cost and resolution are combined.
Uncertainty quantification is central: methods build Bayesian ensembles, decompose
epistemic vs. aleatoric error, or propagate variance through surrogate stacks to provide error
estimates. Adaptive refinement and error estimation emerge as crucial subthemes, employing
residual-driven adaptivity, gradient-based indicators, or trust-region updates to selectively
upgrade fidelity in regions of high uncertainty. Cross-fidelity transfer and fusion submethods
(e.g., co-kriging, residual mapping, blending layers) explore how low- and high-fidelity
predictions communicate or correct each other. Finally, cost-accuracy optimization
frameworks formalize tradeoffs via Pareto balancing or adaptive fidelity switching, allowing
the method to allocate computational budget adaptively. This theme is increasingly vital since
practical deployment requires both speed and reliability.

The fourth theme, Computational Implementation and Integration, addresses the practical
infrastructure, toolchains, and application contexts enabling SciML for PDEs. High-
performance architectures (GPU/TPU acceleration, model parallelism, mixed-precision
training) are frequently required to scale operator and surrogate models to realistic problem
sizes. Benchmarking and validation is a persistent concern: many papers rely on standardized
testbeds (e.g. PDEBench, canonical PDE suites) and reproducibility protocols to compare
methods. Hybrid symbolic-numeric integration subthemes explore combining symbolic
regression (or PDE term discovery) with learned models to yield more interpretable or hybrid
solvers. Software frameworks and toolchains (e.g. DeepXDE, NeuralPDE.jl, differentiable
physics APIs) constitute another strand, as adoption depends on accessible, modular
platforms. Real-world applications (e.g. fluid dynamics, wave propagation, climate modeling,
subsurface flow) provide grounding for methodology and motivate scalability constraints.
Finally, model compression and deployment (quantization, pruning, on-device inference) and
cross-domain scalability (e.g. multi-physics coupling, solver integration, adaptive

communication) are critical to bridge research prototypes to real-world systems. This theme
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underscores that methodological advances must be supported by engineering rigour,

reproducibility, and domain-facing integration.

4. Discussion and Conclusion

The synthesis of thirteen peer-reviewed studies revealed a coherent but multi-layered
picture of how scientific machine learning (SciML) is transforming the numerical treatment of
partial differential equations (PDEs). The thematic analysis showed that research in this
domain is converging toward four interdependent streams: operator learning paradigms,
surrogate and reduced-order modeling, error-controlled multi-fidelity frameworks, and
computational integration practices. Each of these areas addresses a distinct limitation of
traditional solvers, yet their intersection defines the emerging architecture of next-generation
scientific computing. The collective findings indicate that SciML offers new capabilities to
represent complex functional relationships in high-dimensional PDE spaces, reduce
computational cost through hybridization, and integrate uncertainty and adaptivity directly
into learning pipelines.

The first major finding concerned the central role of operator learning as the structural
backbone of modern SciML frameworks. Studies such as those by Brunton et al. (2023) and
Howard et al. (2023) demonstrated that neural operators—specifically DeepONet, Fourier
Neural Operator (FNO), and their physics-informed variants—can learn mappings from
boundary or initial conditions to entire PDE solution fields. This operator-based abstraction
allows for mesh-independent inference and enables extrapolation across unseen domains.
The findings from the reviewed corpus showed that Fourier Neural Operators consistently
outperform convolutional surrogates in problems with translational invariance, while
DeepONet architectures excel in problems requiring flexible input parameterization. These
results align with Hauck et al. (2025), who emphasized discretization-independent
generalization as a necessary property for scalable operator learning. Furthermore, several
reviewed studies indicated that embedding physics priors or residual losses (so-called
physics-informed operator networks) substantially improves convergence and physical
plausibility (Raissi, Perdikaris, & Karniadakis, 2019; Cuomo et al., 2022). Collectively, the
evidence supports the interpretation that operator learning frameworks can bridge purely
data-driven models and PDE-constrained solvers by explicitly encoding functional structure.

A second layer of insight involved surrogate modeling and reduced-order learning. The
analysis confirmed that data-driven surrogates continue to be indispensable when full-order
simulations are computationally intractable. Across the examined literature, autoencoder-
based reduced-order models (ROMs) and hybrid ROM-neural architectures consistently
emerged as powerful approximators that retain essential physical dynamics while
suppressing redundant modes (Kramer et al., 2024; Qian, Farcas, & Willcox, 2021). Temporal
surrogates, particularly those built on neural ordinary differential equations (neural ODESs)

and recurrent architectures, enabled continuous-time prediction of dynamic PDE systems,
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while spatial surrogates employing convolutional or graph-based embeddings improved
spatial coherence. The present study’s synthesis also revealed a strong convergence between
surrogate learning and operator learning: many state-of-the-art methods treat surrogates as
localized operator approximations. This finding resonates with the “hybrid PDE-ML coupling”
paradigm proposed by Freund, MacArt, and Sirignano (2019), in which neural corrections act
as adaptive closures for coarse solvers. Furthermore, sparse and compressive
representations—through L1-regularization, dictionary learning, or tensor decomposition—
were repeatedly identified as enablers of interpretable and lightweight surrogates (Cuomo et
al., 2022). These convergent findings indicate that surrogate modeling has matured beyond
simple emulation into a structured methodology for integrating data-driven inference within
the mathematical infrastructure of PDE solvers.

The third core finding emphasized the growing significance of multi-fidelity and error-
controlled learning strategies. Multiple studies in the dataset, including Howard et al. (2023)
and Sendrea et al. (2024), reported that hierarchical fidelity architectures combining coarse
and fine solvers achieve comparable accuracy to purely high-fidelity models at a fraction of
computational cost. Uncertainty quantification (UQ) was identified as the conceptual bridge
connecting fidelity management with reliability. Bayesian deep ensembles, epistemic-
aleatoric decomposition, and Monte Carlo surrogates were used to estimate model confidence
and drive adaptive refinement. The literature converged on the idea that adaptive learning—
where residual or variance estimates guide additional sampling—is central to error-controlled
SciML. These observations parallel the principles of adaptive mesh refinement in classical
numerical analysis, but here the adaptation occurs in function space rather than geometric
space (Fernandez-Godino, 2023). Moreover, Pareto-based cost-accuracy balancing and trust-
region updates were found to operationalize fidelity transitions dynamically. This theme’s
overarching implication is that successful SciML deployment requires not only expressivity
but also mechanisms of self-evaluation and uncertainty-aware learning. The reviewed
evidence indicates that multi-fidelity schemes are indispensable for scaling operator networks
and surrogates to industrial or mission-critical applications where error bounds are non-
negotiable.

The fourth and final theme concerned computational implementation and integration,
which collectively anchor SciML methods in practical workflows. The reviewed studies
revealed that the majority of computational experiments now employ high-performance
architectures utilizing GPU or TPU acceleration and distributed model parallelism to handle
the massive data throughput required by PDE surrogates (MacKinlay et al., 2022; Wu et al.,
2024). The establishment of community benchmarks, such as PDEBench (MacKinlay et al.,
2022), has begun to standardize validation practices and mitigate overfitting or cherry-picking
of test cases. Additionally, hybrid symbolic-numeric integration emerged as a growing trend:
methods like PDE-LEARN (Stephany et al., 2024) demonstrate that coupling neural

approximation with symbolic regression can identify governing equations directly from data
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while maintaining interpretability. Such work supports the movement toward hybrid
analytical-data-driven discovery frameworks. Finally, cross-domain applications—including
computational fluid dynamics, climate modeling, structural mechanics, and
electromagnetics—demonstrated that SciML has progressed from theoretical feasibility to
domain-specific implementation. Yet, reproducibility and robustness remain challenges: as
McGreivy and Hakim (2024) caution, overoptimistic reporting and weak baselines can distort
perceptions of progress. Thus, rigorous benchmarking, open-source availability, and
independent replication must remain cornerstones of future work.

Overall, the synthesis indicates that SciML for PDEs is moving from proof-of-concept to a
mature, multi-disciplinary research frontier. The integration of operator learning, surrogate
modeling, and multi-fidelity frameworks offers a theoretically unified and computationally
scalable foundation for solving parametric PDEs, performing inverse modeling, and
accelerating simulation pipelines. Importantly, the evidence aligns with the broader shift in
computational science toward differentiable programming and hybrid symbolic-numeric
reasoning. Studies such as Wu et al. (2024) and Cuomo et al. (2022) provide comprehensive
empirical validation that embedding physics constraints within neural networks enhances
generalization and convergence. Similarly, Hauck et al. (2025) showed that discretization-
independent training produces transferable solvers, a milestone toward universal PDE
learners. The present findings thus corroborate a growing consensus: that scientific neural
architectures grounded in physical law can transcend conventional data-driven limits,
provided that reproducibility, uncertainty quantification, and multi-fidelity validation are
institutionalized within research practice.

Despite this progress, several limitations temper the interpretation of current evidence.
First, the sample size of thirteen articles, though theoretically saturated, remains small
relative to the rapidly expanding SciML literature. Selection bias toward English-language,
peer-reviewed publications may have excluded emerging non-indexed contributions or
industrial white papers that document valuable engineering insights. Second, the
heterogeneity of evaluation metrics across studies complicates quantitative comparison:
some use relative L, error, others normalized mean absolute error or visual correlation.
Without standardized benchmarks, direct performance aggregation remains tenuous. Third,
the qualitative synthesis method—while valuable for conceptual mapping—cannot infer
statistical significance or causal relationships between design features and outcomes.
Moreover, some primary studies lacked reproducibility artifacts or full code disclosure,
making secondary verification difficult. Finally, operator learning methods are often
evaluated on lower-dimensional benchmark PDEs (e.g., Burgers or Darcy flow); extrapolation
to multi-physics, turbulent, or chaotic regimes remains speculative. Consequently, while the
present synthesis offers a comprehensive thematic overview, it should be interpreted as a

conceptual scaffold rather than a definitive performance meta-analysis.
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The limitations identified here naturally suggest several directions for future research.
First, large-scale, systematically curated benchmarking initiatives—building upon PDEBench—
should be prioritized to enable reproducible cross-study comparison. Establishing
standardized datasets, evaluation metrics, and uncertainty quantification protocols will
strengthen scientific rigor. Second, further work is needed on interpretable and trustworthy
operator learning. Hybrid symbolic-neural architectures capable of discovering PDE
structures while providing physical explanations (as in Stephany et al., 2024) could close the
gap between black-box models and analytical insight. Third, multi-fidelity learning deserves
deeper theoretical foundations: particularly, principled methods for bias correction and
hierarchical information fusion across discretizations, as proposed by Fernandez-Godino
(2023) and Howard et al. (2023). Fourth, scaling SciML frameworks to high-dimensional
chaotic systems, such as three-dimensional turbulence or coupled atmosphere-ocean models,
will require innovations in sparse training, adaptive sampling, and physics-guided
regularization. Additionally, ethical and practical issues—such as the environmental footprint
of large-scale neural training and the reproducibility crisis—should be addressed through
energy-efficient architectures and open-science mandates (McGreivy & Hakim, 2024). Finally,
interdisciplinary collaboration between applied mathematicians, physicists, and computer
scientists remains vital to ensure that theoretical elegance translates into domain-specific
reliability.

In practical terms, the insights from this synthesis point to a set of actionable
recommendations for researchers and practitioners. Academic investigators should design
SciML experiments with transparent baselines and publish both successes and failures to
counter publication bias. Implementers in engineering, physics, and climate modeling
domains should adopt operator-based surrogates and multi-fidelity strategies not as
wholesale replacements for numerical solvers, but as complementary accelerators for design
exploration, parameter inference, and uncertainty quantification. Industrial R&D teams can
leverage the emerging toolchains—such as DeepXDE, NeuralPDE.jl, and SimNet—to integrate
machine-learned surrogates into digital twins, real-time monitoring, or optimization loops,
provided that error bounds and validation procedures are clearly established. Educators and
curriculum designers might incorporate SciML modules into graduate-level PDE or
computational science courses to cultivate literacy in physics-informed Al Finally, funding
agencies and journal editors should incentivize reproducibility, open datasets, and shared
benchmarks to foster cumulative progress. In sum, operator-centric, surrogate-enhanced, and
error-controlled SciML represents a paradigm poised to redefine computational modeling—
but its promise will be realized only if methodological rigor, transparency, and

interdisciplinary integration are upheld.
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