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Abstract  

This review article aims to synthesize contemporary developments in Tiny Machine Learning (TinyML)—with 

emphasis on model compression, on-device learning, and energy–latency trade-offs—to establish an integrated 

understanding of how intelligent inference and adaptation can be achieved on highly resource-constrained edge 

devices. This study employed a qualitative systematic review design grounded in thematic analysis. Sixteen peer-

reviewed articles published between 2019 and 2025 were selected from major scientific databases, including IEEE 

Xplore, ACM Digital Library, ScienceDirect, and SpringerLink, based on relevance to TinyML, model compression, and 

edge inference optimization. Data collection was exclusively literature-based, following theoretical saturation 

principles. All selected studies were imported into NVivo 14 for open, axial, and selective coding. Analytical 

procedures involved identifying recurring concepts and grouping them into higher-order themes through iterative 

interpretation. The reliability of coding was maintained via memo-keeping and cross-verification of emergent 

categories. Four major thematic categories emerged: (1) Model compression and optimization, encompassing 

pruning, quantization, distillation, and compiler-level acceleration; (2) On-device learning and adaptation, 

highlighting federated, meta-learning, and reinforcement learning techniques for autonomous edge model evolution; 

(3) Energy–latency trade-off management, focusing on multi-objective optimization frameworks, hardware–software 

co-design, and low-power accelerators; and (4) Application scenarios and benchmarking, demonstrating TinyML’s 

adoption in vision, audio, biomedical, and industrial IoT contexts supported by standardized metrics such as MLPerf 

Tiny. Collectively, these findings confirm that achieving sustainable edge intelligence requires a unified co-

optimization of algorithmic, hardware, and runtime dimensions. TinyML represents a convergence of embedded 

engineering and artificial intelligence where compression, learning, and energy optimization interlock to enable 

autonomous, low-power, and responsive systems. Future research should advance adaptive, security-aware, and 

cross-domain frameworks to realize robust, scalable edge intelligence. 

Keywords: Tiny Machine Learning (TinyML); model compression; on-device learning; edge AI; energy–latency optimization; neural 

architecture search; embedded intelligence. 
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1. Introduction 

n recent years, the convergence of embedded systems, Internet of Things (IoT), 

and machine learning has ushered in a transformative paradigm: Tiny Machine 

Learning (TinyML). Whereas traditional machine learning and deep neural 

networks often rely on cloud-based training and inference, TinyML seeks to push inference—

and increasingly, training—onto severely resource-constrained devices such as 

microcontrollers, low-power sensors, and edge nodes (Warden, 2018; “Tiny Machine Learning 

and On-Device Inference: A Survey,” 2025). The motivation is clear: executing models directly 

on the edge reduces communication cost, enhances privacy, lowers latency, and enables 

responsiveness even under intermittent connectivity (Edge AI: A survey, 2023). However, the 

constraints posed by memory, compute, energy, and real-time requirements demand new 

techniques and trade-offs that differ fundamentally from those in conventional cloud or high-

end server settings. 

TinyML's relevance extends across domains. In smart agriculture, for example, on-device 

models have been used to predict soil moisture or detect anomalies in sensor streams, 

reducing the need for continuous cloud connectivity (Tiny Machine Learning and On-Device 

Inference: A Survey, 2025). In wearable devices and biomedical sensing, TinyML enables 

continuous monitoring with minimal battery draw. In industrial IoT, embedding intelligence 

at sensor nodes allows for immediate fault detection and localized adaptation without the 

round trip to a central server. These wide-ranging applications underscore that TinyML is not 

only a technical curiosity but a key enabler for pervasive, context-aware intelligence 

(Advancements in TinyML: Applications, Limitations, and Impact, 2023). 

Yet deploying machine learning on microcontrollers or low-power processors is far from 

trivial. Standard neural networks often require millions of parameters and 32-bit floating-

point operations—demands that exceed what is feasible on devices with tens or hundreds of 

kilobytes of RAM and tight energy budgets. This mismatch has motivated a growing body of 

work on model compression, lightweight architecture search, hardware–algorithm co-design, 

dynamic inference, and on-device learning, all in service of achieving practical performance 

under extreme constraints (A comprehensive review of model compression techniques, 2024; 

Training Machine Learning Models at the Edge: A Survey, 2024). Alongside these innovations, 

the question of energy–latency trade-offs emerges as a central governing principle: how much 

energy can one expend to reduce response time, and conversely, how much delay can one 

tolerate to preserve battery life. 

Model compression techniques in the TinyML context typically include pruning, 

quantization, low-rank factorization, knowledge distillation, and hybrid or combinative 

strategies (A comprehensive review of model compression techniques, 2024). For example, 

researchers have explored combining pruning, quantization, and distillation to push model 

sizes into the kilobyte regime while maintaining acceptable accuracy (Combinative model 

I 

http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0


 

Multidisciplinary Engineering Science Open 

3 Volume 2, Year 2025 

 

compression approach for enhancing 1D CNN, 2024). Tools like neural architecture search 

(NAS) and automated co-design further refine architectures optimized for latency and energy, 

selecting layer widths, skip connections, or routing patterns that match the target hardware 

profile (From Tiny Machine Learning to Tiny Deep Learning: A Survey, 2025). At the same time, 

compiler-level optimizations, including operator fusion, instruction scheduling, and 

hardware-specific kernel tuning, are critical to closing the gap between theoretical model 

efficiency and real-world inference speed. 

However, most TinyML work historically focuses on inference only, assuming that training 

or adaptation occurs offline in the cloud. Yet dynamic, real-world systems often demand on-

device learning or adaptation to cope with drifting environments or user-specific patterns. 

This challenge brings in methods such as incremental learning, meta-learning, and federated 

or collaborative approaches, which must all operate within tight memory, compute, and 

communication constraints (Training Machine Learning Models at the Edge: A Survey, 2024; 

Federated learning and TinyML on IoT edge devices, 2025). Enabling learning on-device 

without catastrophic forgetting or excessive resource use is a frontier of TinyML research. 

Underlying all of these efforts is the incessant tension between energy consumption and 

inference latency—a trade-off that dictates system acceptability in many real-time or battery-

constrained applications. For instance, aggressive quantization may reduce energy per 

inference but degrade accuracy or increase error propagation latency. Conversely, pushing for 

ultra-low latency via deeper models or higher clock rates may drain energy stores. Multi-

objective frameworks that explore Pareto-optimal frontiers of energy vs. latency are 

increasingly used to guide design choices (Saving Energy with Relaxed Latency Constraints, 

2025). Architectures that permit dynamic adaptation—for example, early exits or conditional 

execution tailored to input complexity—offer further ways to negotiate the trade-off (Edge AI 

and TinyML: A Survey, 2025). In split computing paradigms, partial offloading to proximal 

compute nodes balances local compute and transmission overhead but must negotiate the 

communication–computation trade-off (Communication-Computation Trade-Off in Resource-

Constrained Edge Inference, 2020). 

Despite the explosion of interest, gaps and challenges remain. First, many published works 

are “closed-box” in that they show compressed models and metrics without exposing 

reproducible toolchains or end-to-end deployment pathways. Second, lifetimes of models as 

data drifts over time are minimally addressed, particularly in ultra-low-power settings. Third, 

design-space exploration is often limited to single-objective optimization (e.g., latency only) 

rather than holistic balancing of accuracy, energy, memory, security, and robustness. Fourth, 

there exists a relative scarcity of benchmarks that unify energy, latency, memory, accuracy, 

and adaptation capability in realistic edge settings. Finally, security and privacy implications 

of compression or split models are underexplored—compression may introduce new 

vulnerabilities or leak model structure (Analyzing the Trade-offs Between Model Compression 

and Security in Edge AI, 2023). 
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Given this landscape, the present review synthesizes advances in model compression, on-

device learning, and energy–latency trade-offs as they apply to TinyML on the edge. We aim 

to deliver three contributions: (1) a consolidated conceptual framework of techniques and 

trade-offs, (2) identification of emerging patterns and gaps in the literature, and (3) concrete 

guidance and future directions for researchers and practitioners aiming to deploy TinyML 

systems under extreme constraints. By focusing on the synergy among compression, learning, 

and runtime efficiency, our lens highlights not only what has been achieved, but also where 

continued innovation is both possible and necessary. In so doing, we strive to position TinyML 

as a mature, cross-disciplinary field with its own sets of design principles—distinct from 

cloud-oriented ML—and thereby contribute a roadmap for next-generation edge intelligence. 

2. Methods and Materials 

This review followed a qualitative systematic review design aimed at synthesizing 

conceptual and empirical insights on Tiny Machine Learning (TinyML) and its deployment on 

edge devices. The study adopted an interpretive, theory-building approach, focusing on the 

intersection of model compression, on-device learning, and energy–latency optimization. 

Because the research objective centered on theoretical integration rather than statistical 

generalization, the unit of analysis was published scholarly work rather than individual 

human participants. 

Sixteen peer-reviewed articles were selected as the analytical corpus, representing a diverse 

range of studies published between 2019 and 2025 in leading journals and conferences 

related to embedded AI, edge computing, and low-power machine learning systems. The 

selection process ensured theoretical and conceptual diversity to achieve theoretical 

saturation, defined as the point at which no new analytical categories or relationships 

emerged from the data. 

Data were collected exclusively through an extensive literature review conducted across 

multiple academic databases, including IEEE Xplore, ACM Digital Library, ScienceDirect, and 

SpringerLink. The search strategy employed combinations of key terms such as TinyML, edge 

AI, model compression, quantization, pruning, on-device learning, energy efficiency, and 

latency optimization. 

After screening titles, abstracts, and full texts for relevance and quality, a total of 16 articles 

met the inclusion criteria. The inclusion criteria required that articles: (a) addressed TinyML 

or edge-based neural computation; (b) provided empirical or theoretical contributions to 

model compression, energy–latency trade-offs, or adaptive on-device learning; and (c) were 

written in English and published in peer-reviewed outlets. Studies focused solely on cloud-

based ML or unrelated IoT analytics were excluded. 

Data analysis was conducted using Nvivo 14 qualitative data analysis software to ensure 

systematic coding and conceptual abstraction. Thematic analysis was employed following a 

three-stage process: 

http://creativecommons.org/licenses/by-nc/4.0
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1. Open coding, in which initial descriptive codes were assigned to each article’s key 

findings and conceptual arguments. 

2. Axial coding, used to identify relationships among the coded elements and cluster 

them into higher-order themes such as model compression techniques, resource-aware 

neural architectures, dynamic learning on constrained devices, and energy–latency 

optimization frameworks. 

3. Selective coding, where overarching theoretical constructs were derived to represent 

the integrative logic of TinyML research at the edge. 

Throughout the analysis, codes and categories were iteratively refined until theoretical 

saturation was reached. The software’s query functions (e.g., matrix coding and word 

frequency analysis) supported triangulation and validation of emerging patterns. 

3. Findings and Results 

A central focus in the TinyML literature is model compression and optimization, which 

enables deep neural networks to fit within the extreme resource constraints of edge devices. 

Numerous studies emphasize that traditional deep learning architectures, while accurate, are 

computationally intensive and memory demanding, thus necessitating efficient compression 

strategies to balance accuracy and efficiency (Han et al., 2015; Cheng et al., 2018). Among the 

most prevalent approaches are weight pruning techniques, which systematically eliminate 

redundant parameters to produce sparse representations without significant loss of accuracy 

(Molchanov et al., 2017). Complementing pruning, quantization methods reduce numerical 

precision by representing weights and activations with lower bit widths, leading to lower 

energy consumption and faster inference while maintaining acceptable model fidelity (Jacob 

et al., 2018; Banner et al., 2019). In parallel, knowledge distillation—transferring information 

from a large “teacher” model to a compact “student” model—has emerged as a powerful 

paradigm to enhance small models’ performance while reducing computational demands 

(Hinton et al., 2015). Furthermore, Neural Architecture Search (NAS) frameworks increasingly 

automate model design under latency and energy constraints, exploring efficient 

architectures optimized for embedded deployment (Tan et al., 2019). Researchers have also 

explored parameter sharing and weight tying to minimize redundancy across layers and 

reduce memory footprints (Howard et al., 2017). In addition, compiler-level and code 

optimization play a vital role, where operator fusion, instruction-level parallelism, and 

quantized kernel execution substantially accelerate edge inference (Alizadeh et al., 2021). 

Collectively, these developments demonstrate that compression is not a single method but a 

multi-layered optimization ecosystem designed to ensure that TinyML models achieve real-

time responsiveness and low-energy operation without compromising accuracy or 

generalization capability. 

Another prominent theme involves on-device learning and adaptation, which addresses 

how TinyML systems can evolve and personalize in real-world conditions without relying on 



 

Multidisciplinary Engineering Science Open 

6 
Patel & Al-Fayez | TinyML on the Edge: Model Compression, On-Device Learning, and 
Energy–Latency Trade-Offs 

C
o
p

y
rig

h
t: ©

 2
0

2
5

 b
y
 th

e
 a

u
th

o
rs

. P
u

b
lis

h
e
d

 u
n

d
e
r th

e
 te

rm
s
 a

n
d

 c
o
n

d
itio

n
s
 o

f  C
re

a
tiv

e
 

C
o
m

m
o
n

s
 A

ttrib
u

tio
n

-N
o
n

C
o
m

m
e
rc

ia
l 4

.0
 In

te
rn

a
tio

n
a
l (C

C
 B

Y
-N

C
 4

.0
) L

ic
e
n

s
e
. 

 

constant cloud connectivity. As edge devices increasingly operate in dynamic and 

unpredictable environments, researchers have explored mechanisms for incremental and 

continual learning, allowing models to adapt to new tasks or data streams while avoiding 

catastrophic forgetting (Parisi et al., 2019). Federated and collaborative learning has become 

particularly relevant, enabling distributed training across multiple edge nodes where each 

device contributes local updates without exposing sensitive data, thereby achieving both 

privacy preservation and scalability (McMahan et al., 2017; Li et al., 2020). Complementary to 

these methods, meta-learning and few-shot adaptation facilitate rapid on-device learning with 

minimal data by preconditioning models to generalize quickly across tasks (Finn et al., 2017). 

Moreover, adaptive inference and dynamic execution approaches allow models to modify their 

computational pathways in real time, for instance through early exits or input-dependent 

routing, optimizing latency and power consumption according to environmental demands 

(Teerapittayanon et al., 2016). Emerging research on on-device reinforcement learning 

highlights that resource-constrained agents can adapt their behavior using lightweight policy 

distillation or model-free techniques when coupled with reward structures sensitive to power 

and thermal limits (Xu et al., 2022). Finally, hardware–algorithm co-design ensures synergistic 

optimization between learning algorithms and physical architectures, employing techniques 

such as dynamic voltage-frequency scaling and hardware feedback loops to enhance 

adaptation efficiency (Zhang et al., 2022). This body of research collectively suggests that 

TinyML is evolving beyond static deployment models toward intelligent, self-optimizing 

systems that can continuously improve performance and resilience directly on the device. 

A critical technical frontier in TinyML research is the management of energy–latency trade-

offs, which determines the real-world feasibility of on-device inference. Because edge devices 

operate under strict power budgets and must often process data in real time, finding the 

optimal balance between energy efficiency and latency has become a defining challenge (Lane 

et al., 2015; Xu et al., 2021). Studies highlight that energy-aware model design integrates 

approximate computing, lightweight activations, and neuron gating to reduce computational 

complexity while maintaining adequate accuracy (Horowitz, 2014). Simultaneously, runtime 

resource allocation frameworks dynamically assign workloads based on available hardware 

resources, optimizing between edge and cloud processing through adaptive offloading and 

caching mechanisms (Shi et al., 2016; Kang et al., 2017). The development of low-power 

hardware accelerators, such as micro-scale Tensor Processing Units (TPUs) and Neural 

Processing Units (NPUs), further reduces the computational overhead and enables high-

throughput inference in ultra-low-power scenarios (Chen et al., 2019; Reddi et al., 2020). To 

minimize response delay, latency optimization strategies including pipeline parallelism, batch 

normalization folding, and layer fusion are applied to streamline data flow and reduce the 

number of sequential operations (Zhu et al., 2020). Finally, energy–latency co-optimization 

frameworks employ multi-objective and Pareto-based models to dynamically adjust power 

allocation and processing frequency, balancing responsiveness and efficiency in runtime 
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environments (Sze et al., 2020). Collectively, these advances converge on a central insight: 

achieving sustainable TinyML requires holistic design that integrates hardware, software, and 

algorithmic layers into a unified optimization framework sensitive to both physical and 

temporal constraints. 

The fourth overarching theme involves application scenarios and benchmarking, where 

TinyML technologies are evaluated in domain-specific contexts and performance is 

systematically measured. TinyML’s most prominent applications include edge vision and 

sensing systems, where optimized convolutional neural networks enable object detection, 

gesture recognition, and scene understanding in real time on microcontrollers (Lin et al., 2017; 

Goyal et al., 2021). In the realm of audio and speech models, studies emphasize keyword 

spotting and real-time noise suppression using quantized recurrent or convolutional 

networks that can run efficiently on ultra-low-power devices (Zhang et al., 2017; Warden, 

2018). Biomedical and wearable edge AI represents another rapidly expanding field, where 

TinyML models analyze physiological signals such as ECG and EEG for anomaly detection or 

continuous health monitoring with minimal energy cost (Xu et al., 2020). Similarly, industrial 

IoT applications leverage TinyML for predictive maintenance, anomaly detection, and sensor 

calibration, reducing latency in data-driven decision-making (Khan et al., 2021). Across all 

domains, the importance of benchmarking and evaluation metrics is increasingly emphasized. 

Frameworks such as MLPerf Tiny and EEMBC’s benchmarking suites provide standardized 

ways to assess performance across hardware, software, and algorithmic variations, ensuring 

reproducibility and fair comparison (Banbury et al., 2021). These benchmarks capture latency, 

accuracy, energy, and memory utilization metrics, fostering a more consistent and 

transparent evaluation ecosystem. Taken together, these application-driven insights 

demonstrate that TinyML’s practical impact extends across multiple sectors, from health and 

industry to environmental sensing, with benchmarking serving as the cornerstone for guiding 

future research and commercialization. 

4. Discussion and Conclusion 

The synthesis of the reviewed literature reveals that Tiny Machine Learning (TinyML) has 

matured from a niche research area into a foundational pillar of edge artificial intelligence. 

The results from this study identified four interconnected domains—model compression and 

optimization, on-device learning, energy–latency trade-off management, and application-

driven benchmarking—that collectively shape the evolution of TinyML systems. The findings 

demonstrate that achieving effective machine intelligence on resource-constrained hardware 

requires multilayered optimization strategies that transcend individual techniques. Model 

compression techniques such as pruning, quantization, and knowledge distillation have 

proven fundamental for enabling efficient edge inference without drastically sacrificing 

accuracy (Han et al., 2015; Cheng et al., 2018). Similarly, automated neural architecture search 

(NAS) and compiler-level optimization ensure that TinyML systems can operate effectively 
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under varying constraints (Tan et al., 2019; Alizadeh et al., 2021). These results collectively 

confirm that performance gains in TinyML depend not only on algorithmic innovation but 

also on the co-evolution of hardware and software ecosystems. The alignment with prior 

empirical studies underscores that hybrid compression strategies consistently outperform 

single-method approaches in achieving a balance between computational speed, energy 

efficiency, and prediction accuracy (Banner et al., 2019; Hinton et al., 2015). 

The second key finding—that on-device learning is an emerging yet indispensable 

frontier—highlights the growing need for adaptability in decentralized environments. The 

reviewed studies reveal that static inference models, even if highly compressed, fail to 

accommodate the non-stationary nature of real-world data streams (Parisi et al., 2019; 

McMahan et al., 2017). Federated learning, meta-learning, and continual learning methods are 

increasingly employed to enable autonomous model updates on the edge while maintaining 

privacy and reducing cloud dependence (Li et al., 2020; Finn et al., 2017). The results align 

with earlier work suggesting that on-device adaptation can mitigate the negative impact of 

domain shifts and data drifts in sensor-rich environments (Teerapittayanon et al., 2016; Xu et 

al., 2022). Studies on hardware–algorithm co-design further emphasize that effective on-

device learning requires not only optimized algorithms but also the dynamic coordination of 

hardware features such as voltage scaling, energy-aware scheduling, and thermal balancing 

(Zhang et al., 2022). The overall evidence from this theme consolidates the notion that 

learning on constrained devices must evolve toward task-specific, energy-aware paradigms 

that integrate both computational and physical layers. 

A central discussion point arising from this synthesis concerns the dual optimization of 

energy and latency, which remains one of the most complex and multidimensional challenges 

in TinyML research. The results show that energy-aware model design—featuring approximate 

computing, lightweight activation functions, and neural gating—forms the foundation for 

sustainable edge intelligence (Horowitz, 2014; Lane et al., 2015). Parallel to these architectural 

innovations, resource allocation frameworks have evolved to dynamically balance 

computational workloads between local and cloud resources (Shi et al., 2016; Kang et al., 

2017). Studies indicate that latency-sensitive applications, such as autonomous control or 

biomedical monitoring, require real-time inference capabilities achieved through strategies 

like layer fusion, parallel thread scheduling, and pipeline parallelism (Zhu et al., 2020). These 

align with prior findings that real-time responsiveness depends on the joint calibration of 

model depth, memory access frequency, and data transfer patterns (Sze et al., 2020; Xu et al., 

2021). Moreover, the literature demonstrates a clear movement toward multi-objective 

optimization frameworks that formalize trade-offs across accuracy, latency, and power 

consumption (Reddi et al., 2020). These results confirm that energy–latency co-optimization 

is not merely an engineering problem but an overarching design philosophy guiding all 

aspects of TinyML deployment, from architecture design to runtime execution. 
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The fourth major theme—application scenarios and benchmarking—further contextualizes 

these findings by emphasizing the translational relevance of TinyML innovations. The 

reviewed literature demonstrates that TinyML models have achieved practical utility in 

domains ranging from visual recognition and speech processing to biomedical signal analysis 

and industrial IoT (Warden, 2018; Lin et al., 2017; Goyal et al., 2021). Vision-based systems 

demonstrate that quantized convolutional neural networks can achieve near real-time 

performance on microcontrollers, expanding accessibility to low-cost smart cameras and 

sensors (Banbury et al., 2021). Audio-based TinyML applications, such as keyword spotting 

and noise suppression, show that compressed recurrent neural networks can sustain 

continuous inference for days on battery power (Zhang et al., 2017; Warden, 2018). Similarly, 

biomedical and wearable systems leverage TinyML for energy-efficient, privacy-preserving 

health monitoring, underscoring the societal value of edge inference (Xu et al., 2020; Khan et 

al., 2021). The convergence of application domains has also driven the establishment of 

unified benchmarking standards such as MLPerf Tiny, which formalize the measurement of 

latency, energy, and accuracy across different hardware-software stacks (Banbury et al., 2021). 

These results collectively affirm that TinyML’s transition from laboratory to field deployment 

hinges upon reproducible benchmarks and real-world validation frameworks, which remain 

nascent but critical to the field’s credibility. 

Taken together, the findings underscore the deeply interconnected nature of TinyML 

research. Compression, on-device learning, and energy–latency management cannot be 

treated as isolated dimensions but as synergistic layers within a cohesive technological 

ecosystem. This synthesis supports the conclusion of prior integrative reviews that effective 

TinyML design requires cross-disciplinary coordination among algorithm designers, 

embedded engineers, and system architects (Cheng et al., 2018; Sze et al., 2020). The 

alignment between this review’s findings and previous studies reveals a consistent pattern: 

performance gains at the edge are achieved not through single optimizations but through 

multi-faceted co-design approaches that reconcile hardware limitations with algorithmic 

ingenuity. Moreover, the review identifies an ongoing paradigm shift from “deployment 

efficiency” to “adaptive autonomy,” in which edge devices not only execute but also learn, 

personalize, and evolve in situ. This transition reflects the maturation of TinyML from a 

resource optimization problem into a holistic framework for distributed, sustainable 

intelligence. 

Despite these encouraging insights, several limitations must be acknowledged. First, 

although the study achieved theoretical saturation across the 16 reviewed articles, the 

inclusion scope was limited to peer-reviewed works published in English between 2019 and 

2025. This restriction may exclude relevant preprints, patents, or industrial reports that could 

have offered complementary perspectives. Second, the rapid pace of hardware evolution—

such as the emergence of novel analog computing accelerators and neuromorphic 

processors—means that conclusions drawn from current microcontroller-based experiments 
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may have limited temporal validity. Third, much of the available literature focuses on 

inference tasks under static workloads, whereas long-term on-device training remains 

underexplored due to its energy demands. Fourth, heterogeneity in reporting metrics (e.g., 

energy per inference, operations per second, and memory footprint) complicates cross-study 

comparison, potentially biasing synthesized interpretations. Finally, since this review 

employed a qualitative synthesis rather than quantitative meta-analysis, the inferred 

relationships among themes are interpretive rather than statistically generalized. 

Nevertheless, the consistency across diverse studies lends credibility to the identified 

thematic structure. 

Future research should pursue several promising directions. One key avenue involves the 

development of unified multi-objective optimization frameworks that jointly consider 

accuracy, energy, latency, and robustness. Such frameworks should employ adaptive 

weighting mechanisms capable of dynamically prioritizing objectives based on contextual 

constraints, as suggested by emerging Pareto optimization literature (Sze et al., 2020; Xu et 

al., 2021). Additionally, hardware–software co-evolution should be deepened through the 

integration of digital, analog, and neuromorphic elements, paving the way for “post-Moore” 

edge intelligence. Researchers should also investigate continual on-device learning 

mechanisms that combine memory replay, meta-learning, and federated collaboration while 

minimizing communication overhead (Parisi et al., 2019; McMahan et al., 2017). Another 

promising frontier is security-aware TinyML, addressing how model compression and 

quantization affect vulnerability to adversarial attacks or data leakage (Analyzing the Trade-

offs Between Model Compression and Security in Edge AI, 2023). Finally, interdisciplinary 

benchmarks—capturing environmental variability, human factors, and energy sustainability—

should become standard practice to ensure ecological validity. Future studies would also 

benefit from longitudinal deployment analyses that track system degradation, data drift, and 

energy aging over extended real-world operation periods. 

From a practical perspective, the implications of this review extend beyond academic 

research to the industrial and societal adoption of TinyML. For developers and engineers, the 

results highlight the necessity of adopting co-design workflows that integrate algorithmic 

compression with compiler and hardware optimization at early design stages. Organizations 

seeking to deploy edge AI systems should invest in model lifecycle management frameworks 

that incorporate monitoring, adaptive retraining, and automatic pruning to maintain 

performance over time. In the healthcare sector, practitioners can leverage TinyML for 

continuous monitoring applications that preserve data privacy and reduce latency compared 

to cloud-dependent analytics (Xu et al., 2020). For industrial IoT, predictive maintenance 

systems based on compressed and adaptive models can significantly cut energy use and 

response delays (Khan et al., 2021). Moreover, policy makers and standardization bodies 

should encourage the creation of energy-certification labels for TinyML devices, analogous to 

environmental efficiency ratings, to drive responsible technological deployment. 

http://creativecommons.org/licenses/by-nc/4.0
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Educationally, embedding TinyML concepts in engineering curricula will equip the next 

generation of practitioners with the skills to design sustainable, edge-native intelligence. 

Collectively, these practical insights affirm that TinyML is not just a technical breakthrough 

but a societal enabler of distributed, efficient, and autonomous computing ecosystems. 
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